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Abstract: Acetaminophen (APAP) is one of the most commonly used drugs for the safe and ef-
fective treatment of fever and pain. However, it is a well-established hepatotoxin. The objective of
this study was to identify alternation in various genes in liver of mice after administration of low
and high doses of APAP. Male C57BL/6J mice received APAP (30 or 300 mg/kg, i.p.). They were
sacrificed after 6 hr and 24 hr for assessment of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), total RNA isolation, cDNA microarray analysis and histopathological
analysis of liver injury. Low dose of APAP did not cause hepatotoxicity in mice. However, it was
toxic at a high dose. Using microarray technology, we selected changed genes more than 1.5 fold.
Gene expression changes were recorded even at a low dose treatment with APAP. Six (6) hr after
APAP treatment at low dose, 6 genes were up-regulated and 25 genes were down-regulated. How-
ever, 24 hr after treatment at low dose 8 genes were up-regulated and 34 genes were down-regu-
lated. 6 hr after of high dose treatment 29 genes were down-regulated and none was up-regulated.
A 24 hr treatment with high dose up-regulated 6 genes and down-regulated 18 genes. These ex-
pression patterns provide information on high versus low dose mechanisms of APAP toxicity. Gene
expression signatures recorded after a nontoxic dose of APAP strongly support the validity of gene
expression changes as meaningful markers of hepatotoxicity.

KEY WORDS: acetaminophen; hepatotoxicity; gene expression

ACETAMINOPHEN (APAP) is an extensively used analgesic. Typical therapeutic doses
of APAP are not hepatotoxic. Metabolites produced by APAP are reactive electrophiles

Abbreviations: APAP, acetaminophen; ALT, alanine aminotransferase; AST, aspartate aminotrans-
ferase; NAPQI, N-acetyl-p-benzoquinone imine; H&E, hematoxylin and eosin; PAS, periodic acid-
Schiff.



which are oxidized to electrophilic quinones. APAP is converted to a quinoneimine,
namely N-acetyl-p-benzoquinone imine (NAPQI), a cytotoxic electrophile that binds to
cellular proteins. The formation of this toxic metabolite by cytochrome P450 causes cen-
trilobular necrosis of the liver. NAPQI is conjugated with glutathione to form nontoxic
cysteine and mercapturic acid conjugates and is eliminated unless glutathione stores be-
come depleted. The portion of NAPQI not detoxified to APAP mercapturate, binds cova-
lently to critical intracellular molecules which eventually lead to toxicity and cell death
(1–3). Many of these covalently bound proteins are within the mitochondria (4), resulting
in reduced respiration (5) and increased superoxide production (6). Superoxide either re-
acts with nitric oxide to produce peroxynitrite (7) or dismutase to hydrogen peroxide,
whereby it can oxidize cellular macromolecules. The induction of nitric oxide by APAP (8)
is thought to block propagation of lipid peroxidation (9). It is now generally accepted that
loss of mitochondrial function and concomitant generation of oxidative stress are central to
APAP-induced hepatotoxiciy (10,11). Recently, Lucas et al. (12) discussed the role of cy-
cloxygenase in APAP toxicity. However, the mechanisms of APAP toxicity have not been
correlated with gene expression changes. Since observations on gene expression profiling
can serve as a guide for specific genes and/or proteins that could be used as biomarkers of
incipient toxicity or can predict pathological changes, we have tried to detect subtle cellu-
lar disturbances caused by APAP at an acute and overtly toxic dose, in the liver of mice.

Materials and Methods 

Chemicals

APAP was purchased from Sigma-Aldrich (USA). APAP was dissolved in a saline. Trizol
was purchased from InVitrogen (USA). 

Animal treatments 

Ten week old male C57BL/6 mice were obtained from Orient Co. Ltd (Korea). They were
acclimatized to laboratory conditions for two weeks, and maintained on a 12 h light/dark
cycle in the animal room at 23±1 °C and humidity 50±5 %. After acclimatization, mice were
randomly divided into 5 groups each containing 3 mice. Mice of group A received 30
mg/kg APAP through intraperitoneal injection and sacrificed by diethyl ether after 6 hrs.
Whereas mice of group B received the same dose of APAP through same route but sacri-
ficed 24 hrs after APAP injection. Mice of group C received 300 mg/kg APAP through in-
traperitoneal injection and sacrificed after 6 hrs. Mice of group D received APAP in the
same dose and manner as the mice of group C but sacrificed after 24 hrs. Control group
received intraperitoneal injections of saline only and sacrificed after 24 hrs. After respec-
tive treatments, liver samples were carefully removed from each mouse and processed fur-
ther for histopathological, biochemical and cDNA microarray expression studies.

Histopathological observations

Small liver samples collected from treated and control groups were fixed in 10 % neutral
buffered formalin and embedded in paraffin. The 4 μm thick paraffin sections were cut on
a RM2165 microtome (Leica, Germany), stained with hematoxylin and eosin (H&E) and
periodic acid-Schiff (PAS) and examined under a light microscope (Nikon, Japan).
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Biochemical observations

Blood from each mouse was collected from the inferior vena cava. Serum was separated
by centrifugation. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
were determined using an automated clinical chemistry analyzer (Fuji Drichem 3500,
Japan). Data was calculated as mean ± S.D.. The statistical inference was drawn applying
one-way ANOVA followed by the Dunnett test.

Isolation of RNA 

The left lateral lobe of the liver was removed and processed for RNA extraction. Total
RNA was extracted using the TRIzol reagent (InVitrogen, USA) according to the instruc-
tions of the manufacturer and purified using RNeasy total RNA isolation kit (Qiagen, Ger-
many). Total RNA was quantified by NanoDrop ND-1000 (Nanodrop, USA) and its
integrity was assessed by Bioanalyzer 2100 (Agilent, USA).

cDNA microarray

For microarray analysis, fluorescent-labeled cDNA was prepared from the coupled Cy3-
dUTP or Cy5-dUTP using Superscript II (InVitrogen, USA). Single stranded cDNA probes
were purified using a PCR purification kit (Qiagen, Germany). Probes were resuspended
in hybridization solution. The mouse TwinChip 7.4K cDNA chip (DigitalGenomics,
Korea) was used for microarray study.

Analysis of fluorescence spots

After washing the probes, the slides were scanned using Scannarray (Packard, USA) and
analyzed with GenePlex software (Istech, Korea). The log gene expression ratios were
normalized by LOWLESS regression. The genes that were expressed above 1.5 fold
induction or below 2-fold repression after APAP treatment as compared with control
samples were considered for statistical analysis. Significant differences between control
and treated groups were determined using Student’s t test. 

Results

Low dose (30 mg/kg) treatments with APAP for 6 hr and 24 hr did not cause hepatotoxic
effects in mice. High dose (300 mg/kg) treatments, however, were found to be hepato-
toxic. Highly significant elevation in the activities of AST and ALT were recorded in mice
treated with high dose of APAP for 24 hr (Table I).

ACETAMINOPHEN EFFECT ON GENE EXPRESSION 79

TABLE I. AST and ALT activities in the sera of APAP treated mice 

Time after APAP treatment Dose AST ALT

Control (Saline) 51.70±2.55 30.40±2.83
6 hr Low 52.50±4.53 33.95±0.21
6 hr High 65.90±0.14 46.85±2.05
24 hr Low 54.45±13.22 30.65±7.14
24 hr High 478.40±105.08** 445.70±45.85**

**p<0.01 vs. control, t-test (Dunnett). 



Histopathological observations supported the results on serum transaminases. 24 hr
high dose treatment of mice with APAP induced centrilobular necrosis (Figure 1). 

After 6 hr of APAP treatment at low dose, 6 genes were up-regulated and 25 genes were
down-regulated. However, after 24 hr of APAP treatment at low dose, 8 genes were up-
regulated and 34 genes were down-regulated. Results were different between low dose
and high dose treatments. At high dose treatment for 6 hr, 29 genes were down-regulated
and none was up-regulated. 24 hr treatment at high dose up-regulated 6 genes and down-
regulated 18 genes. Significant up-regulated genes included Pklr, Cyp2a4, Igh-VJ558, and
Nsdhl. Down-regulated genes included Slc10a3, Ifi205, Hspa5, Tnfrs7, Selenbp1,
Cyp4a14, and Cyp4a10 (Table II, III).

Discussion

The present study on APAP shows that alteration in gene expression does occur even
when no apparent toxicity is detected using routine histopathological and clinical chem-
istry measurements. Heinloth et al. (13) demonstrated that a subtoxic dose of APAP (150
mg/kg) induced oxidative stress after 6 hr of APAP treatment. Other studies have reported
elevated levels of nitrotyrosine protein adducts that precede and/or accompany APAP in-
duced hepatotoxicity in mice (7, 11). We explain this possibility by the inhibition of GSH
peroxidase. Down-regulation selenium binding protein actually impairs GSH peroxidase.
Inhibition of GSH peroxidase by APAP has already been reported by Gaut et al. (14).
Furthermore, the down-regulation of tumor necrosis factor and proteins of cytochrome
P450 family 4 all support the ROS dependent mechanism of APAP toxicity. It is interest-
ing to note that genes Cyp450, family 2A4 are up-regulated as are those GOT and
NAD(P) dependent dehydrogenase. Moreover, down-regulated heat shock proteins
(Hsp70) again suggest the role of ROS in APAP hepatotoxicity. Jia et al. (15) have shown
that transcription co-activator peroxisome proliferators-activated receptor binding protein
(PBP) that functions as a transcription co-activator for nuclear receptors is abrogated in
APAP hepatotoxicity. Our results show down-regulation of nuclear receptor subfamily 1
and thus find a support from their report.

In general, the acceptance of microarray expression data as a reliable endpoint in any
toxicological study requires careful interpretation and validation. Minami et al. (16) while
analyzing DNA microarray containing 1097 drug response genes also considered cy-
tochrome P450s, other phase I and phase II enzymes, nuclear receptors, signal transduc-
ers and transporters as indicators of hepatotoxicity. They identified 10 up-regulated and
10 down-regulated genes as potential markers of APAP, bromobenzene, and carbon tetra-
chloride in Sprague-Dawley rats (6 weeks old). In addition to these molecular markers,
we have studied those encoding for tumor necrosis factor and heat shock proteins. Ex-
pression of gene encoding for Hsp70 has been studied by Welch et al. (17) in APAP in-
duced liver disease in susceptible and resistant strains of mice. They also suggested
protective role of this protein against APAP hepatotoxicity.

Time course expression profiles for selected genes created after APAP administration
showed that most active gene expression occurs around 4 hr after a toxic dose of APAP (18).
They also observed the down-regulation of these genes after 24 hr, coinciding with the de-
velopment of hepatotoxicity. However, differential expression of hepatic transporter genes
was observed in mice after APAP and carbon tetrachloride treatments (19). There seems to
be a coordinated regulation of both transport and detoxification genes during liver injury.

80 JEONG et al.



Table II. 1.5 folds up-regulated genes in at least one group. 

6h 24h
Genbank No. _______________________ Gene Name

Low High Low High

NM_011267 1.04 0.94 0.23 0.16 Rgs16, Regulator of G-protein signaling 1
NM_009127 0.93 0.08 −0.03 0.34 Scd1, Stearoyl-Coenzyme A desaturase 1
NM_009980 0.80 0.45 0.06 0.33 Ctbp2, C-terminal binding protein 2
NM_011983 0.74 0.83 −0.08 0.23 Homer2, Homer homolog 2 (Drosophila)
NM_008227 0.74 0.59 0.24 0.26 Pklr, Pyruvate kinase liver and red blood
NM_009997 0.97 1.85 0.27 1.08 Cyp2a4, Cytochrome P450, family 2,

subfamily a, polypeptide 4
NM_010324 0.18 1.10 0.24 −0.11 Got1, Glutamate oxaloacetate transaminase 1
NM_032002 0.33 0.89 0.09 0.06 Nrg4, Neuregulin 4

0.48 0.76 0.16 0.07 Igh-VJ558, Immunoglobulin heavy chain (J558 
family)

NM_134469 −0.14 −0.17 0.16 1.02 Fdps, Farnesyl diphosphate synthetase
0.17 −0.03 0.38 0.78 Nsdhl, NAD(P) dependent steroid dehydroge

NM_007654 0.86 0.70 0.89 0.78 Cd72, CD72 antigen
0.25 0.33 0.40 0.64 Similar to acidic ribosomal phosphoprotein P1

The numbers mean relative fold change of treated group versus control and are presented as log base 2.
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FIGURE 1. H&E and PAS stained sections from mice liver 24 hr after high dose of APAP. 
(A) H&E staining. Black lined box: centrilobular necrosis; white lined area: normal tissue, X100.
(B) Enlarged picture from black lined box A, X400. (C) PAS staining. Black lined box: centrilobu-
lar necrosis; white lined area: normal tissue, X100. (D) Enlarged picture from black lined box of C,
X400.



The present study, however, provides predictive information to understand high- versus
low dose mechanisms of APAP toxicity. Furthermore protective role of HSP70 is also
envisaged. In summary, present study suggests that mechanistic differences may exist in
APAP metabolism between subtoxic and overtly toxic doses in mice. Thus gene expres-
sion profiling helps in detecting subtle cellular disturbances at doses and times that could
not be detected by classical toxicological methods. Generating gene signatures as
biomarkers of hepatotoxicity seems to be the most warranted research in predictive
toxicology.
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Table III. 2 folds down-regulated genes in at least one group 

6h 24h
Genbank No. _______________________ Gene Name

Low High Low High

NM_011315 −4.39 −2.95 −2.49 −3.17 Saa3, Serum amyloid A 3
NM_174848 −3.98 −2.16 −2.07 −2.31 CDNA sequence BC043118
NM_011318 −2.97 −2.91 −2.12 −1.64 Apcs, Serum amyloid P-component
NM_172775 −1.95 −1.53 −2.43 −2.90 Plxnb1, Plexin B1
NM_008407 −1.64 −1.44 −1.07 −1.08 Itih3, Inter-alpha trypsin inhibitor, heavy chain 3
NM_145406 −1.43 −1.36 −0.84 −0.96 Slc10a3, Sodium/bile acid cotransporter family,

member 3
NM_028030 −1.33 −1.24 −1.15 −1.07 Rbpms2, RNA binding protein with multiple 

splicing 2
NM_133661 −1.31 −1.33 −0.18 −0.19 Slc6a12, Solute carrier family 6, member 12

−1.28 −0.93 −0.14 −0.26 Tubb2, Tubulin, beta 2
−1.24 −0.96 −1.33 −1.04 Ifi205, Interferon activated gene 205

NM_022310 −1.17 −1.17 −0.80 −0.43 Hspa5, Heat shock 70kD protein 5 
(glucose-regulated protein)

−1.16 −1.23 −0.19 −0.35 Transcribed locus
NM_020577 −1.16 −0.93 −0.81 −0.66 As3mt, Arsenic (+3 oxidation state) 

methyltransferase
NM_017371 −1.13 −1.13 −0.80 −1.00 Hpxn, Hemopexin
NM_010196 −1.13 −0.95 −0.94 −0.78 Fga, Fibrinogen, alpha polypeptide

−1.08 −0.89 −0.48 −0.60 Tnfrsf7, Tumor necrosis factor receptors
NM_133191 −1.04 −1.31 −0.27 −0.51 Eps8l2, EPS8-like 2
NM_018793 −1.00 −0.85 −0.94 −0.78 Tyk2, Tyrosine kinase 2
NM_009150 −0.90 −0.17 −1.33 −1.50 Selenbp1, Selenium binding protein 1

−0.80 −1.15 −0.97 −1.02 Itih4, Inter alpha-trypsin inhibitor, hea
NM_007822 −0.76 −1.58 −1.54 −0.65 Cyp4a14, Cytochrome P450, family 4, subfamily 

a, polypeptide 14
NM_008341 −0.66 −0.17 −0.93 −1.00 Igfbp1, Insulin-like growth factor binding 

protein 1
NM_146101 −0.64 −1.01 −0.56 −0.77 Habp2, Hyaluronic acid binding protein 2
NM_145942 −0.42 −1.32 0.11 0.81 Hmgcs1, 3-hydroxy-3-methylglutaryl-Coenzyme 

A synthase 1
NM_010011 −0.36 −1.00 −0.39 −0.04 Cyp4a10, Cytochrome P450, family 4, subfamily

a, polypeptide 10
NM_145434 0.31 −1.03 0.17 0.58 Nr1d1, Nuclear receptor subfamily 1, group D,

member 1

The numbers mean relative fold change of treated group versus control and are presented as log base 2.
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Abstract: Exposure to water in hot springs containing thoron is thought to exercise beneficial ef-
fects on hypertension and diabetes mellitus. To put to a test this hypothesis we examined the time
dependent changes in the levels of lipid peroxide, vasoactive- and diabetes associated substances in
human blood in order to throw further light on the possible beneficial influence of thoron and ther-
mal therapy on the mechanism of hypertension and diabetes mellitus. Every 2 days, nasal inhala-
tion of vapor containing thoron was performed for 40 min. Blood samples were collected after each
treatment at 1, 2, and 3 weeks after the first treatment. Results show that the treatment decreased
the lipid peroxide levels. The finding suggests that the treatment contributes to the prevention of
peroxidation reaction related to hypertension and diabetes mellitus. Moreover, the changes in
vasoactive-associated substances indicate an increase in tissue perfusion, suggesting that the treat-
ment plays a role in alleviating hypertension. The treatment decreased the total ketone body levels
and the finding suggests that the treatment contributes to the prevention of diabetes mellitus related
to the insulin deficiency.

KEY WORDS: thoron and thermal therapy / hypertension / diabetes mellitus / antioxidant func-
tion / tissue perfusion

RADON (222Rn) is a radioactive gaseous element that mainly emits α-rays. If radon is
inhaled, the lungs will be subjected to the actions of free radicals created by the radiation
and may suffer inflammation. Although radon inhalation has been thought to be hazardous
in general, radon springs have been reported to have therapeutic effects on senile brain
disorder and hypertension (1). Another known effect of a radon spring is to promote the



effects of such tissue perfusion agents as adrenaline in plasma; that is, the level of plasma
adrenaline is increased by radon inhalation (2,3). So far, no epidemiologic data exists on
the hazardous effects of radon (4). 

We have reported that low-dose, unlike high-dose, irradiation enhanced the antioxida-
tion function and reduced oxidative damage (5). Moreover low-dose irradiation enhanced
the immune and anti-oxidation functions (6).

The therapy using radon gas, which is volatilized from radon-enriched water, is per-
formed for various diseases, such as osteoarthritis and asthma (7). Several attempts have
been made to clarify its mechanism, but there have been only a few studies on radon ther-
apy in humans (8,9). 

As the pilot study, the effect of the radioactivity of radon and the thermal effect were
compared at room temperature or a hot spring condition with the same chemical compo-
nent by using as the parameters the activity of superoxide dismutase (SOD), which is an
oxidation inhibitor, and the levels of lipid peroxide, which is closely involved with arte-
riosclerosis. The results were about 2-fold larger in the radon effects than in the thermal
effects. This suggests that the antioxidation function was more enhanced by radon ther-
apy than by thermal therapy, and that radon therapy might help to prevent the causes of
life style-related diseases such as arteriosclerosis (10). 

Considering this background, in this study, we evaluated dynamic changes in human
blood components in order to throw light on the alleged beneficial influence of thoron and
thermal therapy on the mechanism of hypertension and diabetes mellitus.  

Subjects and Methods

Fifteen persons, 40 to 60 years of age were studied; five were patients with hypertension,
five were patients with diabetes mellitus and five were healthy persons (no hypertension
and no diabetes). In this study, hypertension or diabetes mellitus is defined as systolic
blood pressure above 140 mmHg or diastolic blood pressure above 90 mmHg, or that
blood glucose level is above 126 mg/dL, respectively. The subjects were in a hot bath
room with a high concentration of thoron. The room temperature was 42 °C, and the air
concentration in the thoron hot spring bath room was about 4900 Bq/m3. Subjects did not
bathe but only stayed in the above bath room. Nasal inhalation was used because the up-
take of thoron is most efficient by this method. Every 2 days, nasal inhalation of vapor
from the hot spring in the room was performed for 40 min once a day under a condition
of high humidity (90 %). Blood pressures were measured and blood samples were col-
lected after each treatment (before meal) at 1, 2, and 3 weeks after the first treatment.
Blood pressure was measured and a blood sample was collected before the first treatment
to be used as the control. The written informed consent was obtained from all subjects.

We entrusted the biochemical assays of the blood samples to the special clinical analy-
sis service. Briefly, each biochemical indicator was measured; lipid peroxide level in
serum by the hemoglobin methylene blue method, atrial natriuretic polypeptide (ANP)
level in EDTA plasma by the immunoradiometric assay (IRMA), blood glucose level by
enzymatic method, and total ketone body, free fatty acid, acetoacetic acid, and 3-hydroxy
butyric acid (3-OHBA) by enzymatic method. 

Data values are presented as the mean ± SEM. The statistical significance of differences
was determined by using Student’s t-test for comparison between two groups or two-way
ANOVA and Dunnett tests for multiple comparison. 
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Results

Time Dependent Changes in Blood Pressures 

Before the first treatment, both the maximum blood pressures and the minimum blood
pressures in the hypertensive group were significantly higher than those in the non-
hypertensive group. The maximum blood pressures in the non-hypertensive group (on
weeks 2 and 3 after the first treatment) and those in the hypertensive group (on week 3)
were significantly decreased compared with the control (before the first treatment). On
weeks 1 and 3, the minimum blood pressures in the non-hypertensive group were signif-
icantly decreased compared with the control. No significant changes were observed in the
other experimental conditions (Figure 1).

Time Dependent Changes in Blood Glucose Level

Before the first treatment, the blood glucose level in the diabetes group was significantly
higher than that in the non-diabetic group. The blood glucose level in the non-diabetic
group (on week 3) was significantly decreased compared with the control. No significant
changes were observed in the other experimental conditions (Figure 2).

Time Dependent Change in Lipid Peroxide Level

Before the first treatment, the lipid peroxide level in the hypertensive group or the non-
diabetic group were not significantly different from that in the non-hypertensive and non-
diabetic group. The lipid peroxide levels in the non-hypertensive and non-diabetic group
or the diabetic group (on weeks 2 and 3) and that in the hypertensive group (on week 2)
were significantly decreased compared with the control respectively. No significant
changes were observed in the other experimental condition (Figure 3).
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FIGURE 1. Time dependent changes in maximum blood pressures (A) and minimum blood pres-
sures (B) of patients with hypertension and without hypertension after first thoron and thermal treat-
ment. Each value represents the Mean ± SEM. The number of subjects in each experiment is five.
*P<0.05, **P<0.01, ***P<0.001, hypertensive group or non-hypertensive group value vs. each con-
trol (before treatment) value. #P<0.05, ###P<0.001, hypertensive group value vs. non-hypertensive
group value.
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FIGURE 2. Time dependent changes in blood glucose level in blood of patients with diabetes and
without diabetes after first thoron and thermal treatment. The number of subjects in each experiment
is five. #P<0.05, diabetic group value vs. non-diabetic group, *P<0.05, **P<0.01, diabetic group
value vs. control value.

FIGURE 3. Time dependent changes in lipid peroxide levels in blood of patients with hypertension
or diabetes, and without hypertension or diabetes after first thoron and thermal treatment. The num-
ber of subjects in each experiment is five. *P<0.05, **P<0.01, ***P<0.001, non-hypertensive and
non-diabetic group value vs. each control value.



Time Dependent Change in Vasoactive-associated Substance Level

Before the first treatment, the a-ANP level in the hypertensive group was significantly
higher than that in the non-hypertensive group. The α-ANP levels in the non-hypertensive
group (on weeks 1 and 2) and that in the hypertensive group (on week 3) were signifi-
cantly increased compared with each control, respectively. No significant changes were
observed in the other experimental conditions (Figure 4).

Time Dependent Changes in Diabetes-associated Substances Levels

The acetoacetic acid in the non-diabetic group (on week 2) and those in the diabetic group
(on week 2) were significantly decreased compared with the control. The 3-OHBA and
total ketone body in the diabetic group (on weeks 2 and 3) were significantly decreased
compared with the control. Moreover, the free fatty acid in the group with diabetes mel-
litus (on week 2) was significantly decreased compared with the control. No significant
changes were observed in the other experimental conditions (Figure 5).

Discussion

Radon is an inert gas and as such does not react with any chemical component of the
body. On entry through lungs or through the skin, it reaches the blood stream and is then
distributed throughout the body. Because it is rather lipid soluble, radon tends to accu-
mulate in organs rich in fat, such as the endosecretory glands, and also nerve fibers, which

BIOCHEMICAL MECHANISM OF THORON THERAPY 89

FIGURE 4. Time dependent changes in vasoactive-associated substances level in blood of patients
with hypertension and without hypertension after first thoron and thermal treatment. The number of
subjects in each experiment, and significance are as described in Figure 1.



are surrounded and protected by a lipid-containing layer. Retention time in the body is
short; 50 % disappears after only 15 to 30 min. It is during this short period, however,
while radon is in contact with the tissue, that it launches the stimulus effects. Radon is a
source of α-rays, and it can only travel a distance of about 20 μm through body tissues.
The relatively large transfer of energy that is associated with the absorption of α-particles
causes a series of complicated reactions within the tissues. As yet the molecular processes
involved are still poorly understood. It is safe, however, to assume that radiolytic radicals
are released, and these in turn stimulate detoxification processes and also might stimulate
such processes as cell metabolism and energy conversion within mitochondria as well as
biosynthesis of enzymes and other proteins or bioactive peptides (7).

It has been known that the activity of SOD, which is a scavenger of superoxide radi-
cals, is increased in cultured cells (11) and in various organs of rats (12) and rabbits (13)
by exposure to radon. We also showed that the lipid peroxide level was reduced in rabbits
by radon inhalation (13). While the induction by a low dose of α-ray irradiation with in-
halation of enzymes such as SOD and catalase, which inhibit lipid peroxidation in the
body, i.e., an activation of the protective mechanisms of the body, may also be related to
this decrease in total cholesterol level (10). Moreover we have reported that the results on
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FIGURE 5. Time dependent changes in diabetes-associated substances levels in blood of patients
with diabetes and without diabetes after first thoron and thermal treatment. The number of subjects
in each experiment, and significance are as described in Figure 2.



week 1 were about 2-fold larger in the radon group than in the thermo group (10). This
suggests that the anti-oxidation function was more enhanced by the radon effect than by
the thermo effect, and suggests that radon inhalation may prevent the causes of life style-
related diseases such as hypertension and diabetes mellitus. 

In this study, the lipid peroxide levels in the blood of the patients with hypertension or di-
abetes mellitus were found to be decreased by low dose α-rays irradiation with thoron in-
halation. The decrease in the lipid peroxide level may be linked to the thoron and thermal
effects on membrane structure. This possibility, however, was not evaluated in this study.

Moreover the thoron and thermal treatment increases the level of α-ANP, which de-
creases blood pressure by relaxation of the vascular smooth muscle, in the blood of hyper-
tension patients. This finding indicates what may be a part of the mechanism for the
increase in tissue perfusion, namely, the decrease in blood pressure brought about by the
treatment.

Total ketone body consists of acetoacetic acid, 3-OHBA, and acetone. When insulin de-
creases, the ketone body is induced to maintain blood glucose level. Diabetic ketoacido-
sis is developed by insulin deficiency or impaired insulin action. The insulin deficiency
induces high blood glucose level with inhibition of the glucose absorption into cells. Fatty
acid is degraded to gain another energy. Therefore diabetic ketoacidosis develops by in-
sulin deficiency and the ketone body, especially 3-OHBA, is accumulated in the blood. In
this study, the acetoacetic acid, the 3-OHBA, and total ketone body decreased at about 2
or 3 weeks after first treatment. These findings suggest that thoron inhalation prevents
diabetic ketoacidosis. 

On the other hand, the half-life of thoron (220Rn, 55.6 sec), which is the isotope of
radon, is shorter than that of radon (3.82 days), and the α particle energy of thoron (6.29
MeV) is larger than that of radon (5.49 MeV). Moreover, α particles emitted by 222Rn
progeny and 220Rn progeny are mainly responsible for the biological effects on the respi-
ratory organs, because most radon, an inert gas, is exhaled after it is inhaled. Therefore,
the potential α energy concentrations of them were evaluated. For example, the potential
α energy concentrations of the progeny were summed up for the case where the atmos-
pheric 222Rn concentration in a hot bathroom with a high concentration of radon (at
Misasa Medical Center of Okayama University Medical School) was equal to that of
220Rn concentrations in a bathroom of an artificial thoron hot spring. We assumed that the
atmospheric concentration of 222Rn progeny were equal to that of 220Rn progeny, this be-
cause of the great difficulty in measuring them. Consequently, the total potential α energy
concentrations of 220Rn progeny were about 17 times as high as those of 222Rn progeny.
It is likely that 220Rn therapy has more biological effects on a bronchus and lung than
222Rn therapy when atmospheric 220Rn and their progeny concentrations in the bathroom
are equal to that of 222Rn and their progeny.

These findings suggest that an appropriate amount of active oxygen is produced in the
body after the treatment, and this contributes to the alleviation of the symptoms of active
oxygen diseases, such as hypertension and diabetes mellitus via certain processes such as
activation of the biological defense mechanism, or promoting these physiological changes
such as tissue perfusion (2,3), in contrast to the toxic effects of thoron inhalation at higher
concentrations.

In the future, clarification in detail of the mechanisms of these phenomena will be help-
ful toward understanding the effects of thoron and thermal treatment on the functions of
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the living body. Moreover, in order to enhance the beneficial effects of thoron inhalation,
the optimal doses of thoron should be determined together with the development of pre-
cise microdosimetry. Further, we will conduct studies on the biochemical comparison be-
tween the radon effects and the thoron effects when the radioactive concentration of
thoron is equal to that of radon.

The authors are indebted to Dr. Chunosuke Sugie (Sugie Clinic, Japan) and Dr. Shoji Futatsugawa
(Japan Radioisotope Association) for their excellent technical advice.
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Abbreviations: HK, hypokinesia; UHKR, unsupplemented hypokinetic rats; UVCR, unsupple-
mented vivavium control rats; SHKR, supplemented hypokinetic rats; SVCR, supplemented vivar-
ium control rats.
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Abstract: This study aims at showing that during hypokinesia (HK) tissue magnesium (Mg2+) con-
tent decreases more with higher Mg2+ intake than with lower Mg2+ intake and that Mg2+ loss in-
creases more with higher than lower tissue Mg2+ depletion due to inability of the body to use Mg2+

during HK.
Studies were conducted on male Wistar rats during a pre-HK period and a HK period. Rats were

equally divided into four groups: unsupplemented vivarium control rats (UVCR), unsupplemented
hypokinetic rats (UHKR), supplemented vivarium control rats (SVCR) and supplemented hypoki-
netic rats (SHKR). SVCR and SHKR consumed 42 mEq Mg2+ per day.

The gastrocnemius muscle and right femur bone Mg2+ content decreased significantly, while
plasma Mg2+ level and urine and fecal Mg2+ loss increased significantly in SHKR and UHKR com-
pared with their pre-HK values and their respective vivarium controls (SVCR and UVCR). How-
ever, muscle and bone Mg2+ content decreased more significantly and plasma Mg2+ level, and urine
and fecal Mg2+ loss increased more significantly in SHKR than in UHKR. 

The greater tissue Mg2+ loss with higher Mg2+ intake and the lower tissue Mg2+ loss with lower
Mg2+ intake shows that the risk of higher tissue Mg2+ depletion is directly related to the magnitude
of Mg2+intake. The higher Mg2+ loss with higher tissue Mg2+ depletion and the lower Mg2+loss with
lower Mg2+ tissue depletion shows that the risk of greater Mg2+ loss is directly related to the mag-
nitude of tissue Mg2+ depletion. It was concluded that tissue Mg2+ depletion increases more when



the Mg2+ intake is higher and that Mg2+ loss increases more with higher than lower tissue Mg2+ de-
pletion indicating that during prolonged HK the tissue Mg2+ depletion is not due to the Mg2+ short-
age in food but to the inability of the body to use Mg2+. 

KEY WORDS: magnesium deposition, tissue magnesium depletion, cell injury, energy depletion,
enzyme deficiencies, ion transport alterations, physical inactivity.

HYPOKINESIA (diminished movement) is associated with a reduction in flow of affer-
ent and thus, efferent impulsation, and the body is deprived of its constant regulatory in-
fluence (1–4). A change from increased to decreased muscular activity contributes to the
formation of hypokinetic stress (1, 2), and the greater the magnitude of the differences be-
tween these two conditions, the stronger the effect of stress is on the body during pro-
longed hypokinesia (HK) (1, 2). 

The coefficient of distribution of electrolytes in muscle and blood, and between muscle
and blood is the integral characteristic of the functional condition of the skeletal muscles.
Being involved in finely regulated processes of active membrane transport and intracellu-
lar phases, electrolytes are distributed in muscles according to the functional condition of
the system of membranomyo-fibril conjugation (5), metabolic activity of cell (6), and
chemical composition of cytoplasmic template that carries fixed charges (7). Any condi-
tion which affects the muscular activity, would inevitably lead to the redistribution of
electrolytes in the body resulting in tissue electrolyte changes (8–15). Although muscle
electrolyte redistribution has not been established, it has been shown that during HK the
skeletal muscle electrolyte content is easily affected (8–15). There is little information
available on the effect of HK on muscle electrolyte content and no additional information
was retrieved from the different medical data bases other than the unrelated information
from non-hypokinetic studies, i.e., bed rest, weightlessness, immersion, detraining, etc.
Thus, determination of the skeletal muscle electrolyte content during prolonged HK de-
serves further studies. 

During HK, tissue electrolyte content decreases either with higher or lower electrolyte
intake (8–15). The decreased tissue electrolyte content is accompanied by a higher plasma
electrolyte level and a greater bodily electrolyte loss from the animal. Other studies sug-
gest that the underlying mechanism for this triple response—tissue electrolyte depletion,
increased plasma electrolyte level and electrolyte loss from animal—might not be the
same as a similar triple response produced by normal muscular activity, since other fac-
tors have been shown to contribute to the higher plasma electrolyte level and bodily loss
of electrolyte with tissue electrolyte depletion (8–15). On the other hand, higher plasma
electrolyte level and bodily electrolyte loss with tissue electrolyte depletion might be
linked to muscle cell membrane changes (16).

Until now there has been little information on magnesium (Mg2+) deposition in tissues.
Thus, we do not know how total bodily loss of Mg2+ is related to tissue Mg2+ depletion or
whether tissue Mg2+ depletion comes from Mg2+ shortage in the food consumed or from
an inability of the body to accumulate this electrolyte (10–13). Now, each electrolyte has
a well-defined and separate homeostatic mechanism to regulate that electrolyte’s content
in a tissue at both the cell membrane level and higher organ level (e.g., bone, renal, gas-
trointestinal and hormonal). For this reason, it is important to study the effect of pro-
longed HK on tissue Mg2+ content in order to determine the potential of lower Mg2+

deposition and higher Mg2+ loss with tissue Mg2+ depletion.
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To this end the objective of this study was to show that tissue Mg2+ content decreases
more with higher than with lower Mg2+ intake and that Mg2+ loss increases more with
higher than lower tissue Mg2+ depletion due to the inability of the body to use Mg2+ and
not due to the Mg2+ shortage in food. Measurements of bone and muscle Mg2+ content,
plasma Mg2+ levels and Mg2+ loss in urine and feces of rats with higher and lower Mg2+

intake during HK were made. 

Methods and Materials 

Two hundred forty 13-week-old male Wistar rats were obtained from a local breeding an-
imal laboratory. On arrival they were given an adjusting dietary period of 9-days during
which they were fed a commercial laboratory diet. During this pre-HK period of 9-days rats
were kept under vivarium control conditions. At the start of the investigation, all rats were
about 90-days old and weighed 370 to 390 g. Rats were housed in individual metabolic
cages where light (07:00 to 19:00 h), temperature (25 ± 1 °C) and relative humidity (65%)
were automatically controlled. Cages were cleaned daily in the morning before feeding.
The studies were approved by the Committee for the Protection of Animals. 

Assignment of animals into four groups was conducted randomly and their conditions
were:

Group one: sixty unrestrained rats were housed in individual cages for 98-days
under vivarium control conditions. They served as unsupplemented vi-
varium control rats (UVCR).

Group two: sixty restrained rats were kept in small individual cages for 98-days.
They served as unsupplemented hypokinetic rats (UHKR).

Group three: sixty unrestrained rats were housed in individual cages for 98-days
under vivarium control conditions. They were supplemented with 42
mEq of magnesium acetate per day and they served as supplemented vi-
varium control rats (SVCR).

Group four: sixty restrained rats were kept in small individual cages for 98-days.
They were supplemented with 42 mEq of magnesium acetate per day
and they served as supplemented hypokinetic rats (SHKR).

Protocol

Studies during HK were preceded by a pre-HK period of 9-days which involved a series
of biochemical testing and conditioning of animals to their new laboratory conditions. This
preparation period was carried out for collecting pre-HK values with regard to bone and
muscle Mg2+ content, plasma, urine and fecal Mg2+ values. This period of adaptation was
aimed at minimizing hypokinetic stress induced by diminished muscular activity (1, 2).

Simulation of Hypokinesia

Hypokinetic rats were kept for 98-days in small individual wooden cages. The dimensions
of the cages were 195 x 80 x 65 mm and allowed movements to be restricted in all
directions without hindering food and water intakes. The hypokinetic rats could still as-
sume a natural position that allowed them to groom different parts of their body. When
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necessary, the conditions of individual cages could be changed using special wood inserts.
The cages were constructed so that their size could be changed in accordance with the size
of each animal, thus the degree of restriction of muscular activity throughout the study
could be maintained at a relatively constant degree.

Food and fluid consumption

Food intake was measured and 90% of a daily intake (12 g) was mixed with deionized
distilled water (1:2 wt/vol) to form a slurry which was divided into two meals. Rats were
pair-fed and daily food intakes were measured during pre-HK and HK. Control rats were
allowed to eat approximately the same amounts of food as hypokinetic rats. The daily di-
etary intake of food was placed in individual feeders formed by the little trough and wood
partitions. Food for the entire study was from the same production lots that contained all
essential nutrients, i.e., 19% protein, 4% fat, 38% carbohydrates, 16% cellulose, vitamins,
A, D, E, 0.6% phosphorus, 0.6% sodium chloride, 0.7% calcium, 0.65% magnesium and
0.9% potassium per one g diet and kept in a cold chamber (4 °C). Food intake was mea-
sured daily by weighing (Mettler PL 200 top load balance) the slurry food containers.
Rats received deionized-distilled water ad libitum. Water dispensers (120 to 150 mL) were
secured onto a wooden plate installed on front cage panels and filled daily. 

Plasma, feces and urine sample collection

Plasma samples were collected every 6-days, while urine and feces were collected from
each rat every day and pooled to form 6-day composites. Six-day (consecutive day)
pooled samples were collected during pre-HK and HK periods. Blood samples were 2.0
mL and were obtained via a cardiac puncture from ether-anesthetized animals with
syringes containing heparin. To obtain plasma, blood samples were transferred to
polypropylene tubes, and centrifuged immediately in a refrigerated centrifuge. Aliquots
for plasma Mg2+ analysis were stored at −20 °C. A stainless steel urine-feces separating
funnel (Hoeltge, model HB/SS Hoeltge Inc., Cincinnati, OH, USA) was placed beneath
each animal to collect 24 h urine samples uncontaminated by stools. To ensure 24 hr
urine collections creatinine excretion was measured by colorimetric method. Urine was
collected in a beaker with layers of mineral oil to prevent evaporation. Beakers were re-
placed daily. Urine for each 24 h period was collected in acidified acid-wash containers
and was stored at −4 °C until Mg2+ analysis. Fecal samples were collected in plastic
bags, dried-ashed in a muffle furnace at 600°C overnight. Ashed samples were dissolved
in 5% nitric acid. To ensure complete recovery of feces polyethylene glycol was used as
a marker.

Tissue preparations, electrolyte extraction and analysis

Samples were collected during pre-HK and HK and mean ± SD of muscle water-electro-
lyte levels are presented. Six rats from each group were exsanguinated under ether anes-
thesia by cardiac puncture. Six hypokinetic and six control rats from each group were
decapitated on the 1st, 7th and 9th day of pre-HK period, and on the 3rd, 7th, 15th, 30th,
50th, 70th and 98th of the HK period. Muscle (gastrocnemius) and bone (right femur)
data are represented as the average of six rats. We have studied the right femur because
during HK it is affected more than left femur (17–19).The femur bones were cleaned of
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soft tissues, dried to a constant weight, weighed, reduced to ash in a muffle furnace at 600
degrees for 144 minute, then the ash was weighed and dissolved in 0.05 N HCl and, as a
chloride solution, analyzed for Mg2+. Gastrocnemius muscles were excised immediately
after decapitating the rats. Muscles were thoroughly cleaned of connective tissues, fatty
inclusions and large vessels, weighed on Teflon liners and placed in a drying chamber at
110 °C. After drying to a constant weight muscle was transferred to quartz tubes for min-
eralization by means of concentrated HNO3, distilled off in a quartz apparatus. After ash-
ing, the residue was dissolved in 0.05 M HCl and, as chloride solution, analyzed for Mg2+.

Tissue magnesium measurements

Samples were analyzed in duplicate and appropriate standards were used for measure-
ments. Mg2+ in gastrocnemius muscle and femur bone, and Mg2+ levels in plasma, feces
and urine were measured. Urine and fecal samples were diluted as necessary and aspirated
directly into an atomic absorption spectrophotometer (Perkin-Elmer 3030 model, Perkin-
Elmer Corp., Norwalk, CT). 

Data analyses

The results were analyzed with a 2 (hypokinetic vs. active controls) X 2 (supplemented vs
unsupplemented) X 2 (pre-intervention vs. post-intervention) ANOVA with repeated mea-
sures on the last factor. The ANOVA test followed by Tukey’s test was used to establish
which means were significantly different from each other. The predetermined level of sig-
nificance was set at alpha <0.05. The results obtained were reported as mean ± SD (Stan-
dard Deviation).

Results 

Pre-hypokinetic tissue magnesium changes with and without magnesium
supplementation

Muscle and bone Mg2+ content, plasma Mg2+ level, and urine and fecal Mg2+ loss (Table I)
showed no difference between hypokinetic and control groups of rats. The Mg2+supple-
mentation did not affect muscle and bone Mg2+ content, plasma Mg2+ level, and urine and
fecal Mg2+ loss in supplemented hypokinetic and control groups of rats (Table I). 

Hypokinetic tissue magnesium changes with and without magnesium
supplementation

Muscle and bone Mg2+ content, plasma Mg2+ level, and urine and fecal Mg2+ loss did not
change in UVCR and SVCR compared with their pre-HK values (Table I). Muscle and
bone Mg2+ content decreased significantly (p<0.05), while plasma Mg2+ level, and urine
and fecal Mg2+ loss increased significantly (p<0.05) in SHKR and UHKR compared with
their pre-HK values and values in their respective vivarium controls (SVCR and UVCR)
(Table I). However, muscle and bone Mg2+ content decreased more significantly (p<0.05),
while plasma Mg2+ level, and urine and fecal Mg2+ loss increased more significantly
(p<0.05) in SHKR than in UHKR (Table I). 
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TABLE I.  Plasma Magnesium, Urine and Fecal Magnesium, and Gastrocnemius Muscle  and
Right Femur Bone Magnesium Levels Measured in Rats at Pre-hypokinesia and During

Vivarium Control and Hypokinesia both With and Without Magnesium Supplementation.

Gastrocnemius Right Femur 
Plasma Urine Feces muscle (mEq/kg Bone

Days (mEq/L) (mEq/days) (mEq/days) wet tissue) (mg/100 g ash)

Unsupplemented Vivarium Control Rats (UVCR), n=60
Pre-HK 2.4 ± 0.3 0.40 ± 0.03 14.11 ± 2.4 21.2 ± 1.4 751.0 ± 40.3
3rd 2.3 ± 0.4 0.38 ± 0.04 13.83 ± 2.3 21.3 ± 1.3 752.3 ± 45.2
7th 2.2 ± 0.2 0.40 ± 0.03 14.07 ± 2.0 21.2 ± 1.4 751.2 ± 27.0
15th 2.4 ± 0.5 0.39 ± 0.02 13.71 ± 2.2 21.5 ± 1.3 753.5 ± 42.2
30th 2.3 ± 0.4 0.40 ± 0.03 14.01 ± 2.3 21.4 ± 1.5 752.3 ± 36.0
50th 2.2 ± 0.2 0.38 ± 0.04 13.80 ± 2.0 21.6 ± 1.4 754.7 ± 33.3
70th 2.3 ± 0.3 0.39 ± 0.03 14.02 ± 2.3 21.5 ± 1.4 753.5 ± 40.4
98th 2.2 ± 0.5 0.40 ± 0.04 13.54 ± 2.4 21.7 ± 1.3 755.7 ± 31.4

Unsupplemented Hypokinetic Rats (UHKR), n=60
Pre-HK 2.4 ± 0.2 0.40 ± 0.03 14.07 ± 2.5 21.7 ± 1.5 751.3 ± 40.2
3rd 2.7 ± 0.3* 0.53 ± 0.06* 19.06 ± 2.7* 19.4 ± 1.2* 660.7 ± 36.3*
7th 2.6 ± 0.4* 0.51 ± 0.05* 18.45 ± 3.0* 19.6 ± 1.4* 675.6 ± 42.0*
15th 2.7 ± 0.3* 0.55 ± 0.07* 21.03 ± 2.8* 18.7 ± 1.2* 641.8 ± 35.6*
30th 2.6 ± 0.4* 0.53 ± 0.05* 19.87 ± 3.4* 18.9 ± 1.3* 651.1 ± 42.2*
50th 2.8 ± 0.2* 0.57 ± 0.07* 22.00 ± 2.7* 18.0 ± 1.2* 638.0 ± 30.7*
70th 2.7 ± 0.3* 0.55 ± 0.04* 21.67 ± 3.3* 18.3 ± 1.3* 647.4 ± 44.0*
98th 2.8 ± 0.3* 0.60 ± 0.05* 23.85 ± 2.8* 17.8 ± 1.4* 628.3 ± 38.5*

Supplemented Vivarium Control Rats (SVCR), n=60
Pre-HK 2.5 ± 0.4 0.44 ± 0.03 16.13 ± 2.3 22.0 ± 1.5 772.1 ± 43.2
3rd 2.6 ± 0.5 0.49 ± 0.01 18.35 ± 3.0 22.2 ± 1.4 774.0 ± 50.6
7th 2.5 ± 0.4 0.47 ± 0.03 17.80 ± 2.0 22.1 ± 1.6 773.7 ± 38.7
15th 2.6 ± 0.5 0.50 ± 0.03 18.32 ± 2.5 22.3 ± 1.4 775.5 ± 45.4
30th 2.5 ± 0.5 0.48 ± 0.02 17.76 ± 2.4 22.2 ± 1.6 774.4 ± 51.3
50th 2.5 ± 0.4 0.50 ± 0.01 18.45 ± 2.2 22.5 ± 1.5 776.8 ± 36.5
70th 2.6 ± 0.6 0.47 ± 0.03 17.80 ± 3.0 22.3 ± 1.4 775.6 ± 41.4
98th 2.5 ± 0.5 0.49 ± 0.02 18.41 ± 2.3 22.6 ± 1.5 777.8 ± 32.3

Supplemented Hypokinetic Rats (SHKR), n=60
Pre-HK 2.5 ± 0.5 0.44 ± 0.01 16.33 ± 2.5 22.5 ± 2.0*+ 773.0 ± 40.5*+

3rd 2.9 ± 0.6*+ 0.73 ± 0.04*+ 28.22 ± 2.7*+ 18.0 ± 1.5*+ 607.2 ± 55.6*+

7th 2.8 ± 0.4*+ 0.67 ± 0.02*+ 24.70 ± 2.9*+ 18.2 ± 1.4*+ 615.8 ± 43.7*+

15th 3.0 ± 0.5*+ 0.83 ± 0.03*+ 33.02 ± 3.0*+ 17.4 ± 1.3*+ 591.2 ± 54.5*+

30th 2.9 ± 0.7*+ 0.75 ± 0.04*+ 27.84 ± 2.8*+ 17.6 ± 1.2*+ 603.5 ± 40.7*+

50th 3.1 ± 0.5*+ 0.87 ± 0.05*+ 36.53 ± 3.1*+ 16.6 ± 1.4*+ 587.1 ± 51.4*+

70th 3.0 ± 0.6*+ 0.79 ± 0.04*+ 32.97 ± 2.7*+ 16.9 ± 1.2*+ 594.6 ± 46.6*+

98th 3.2 ± 0.5*+ 0.98 ± 0.03*+ 40.21 ± 3.3*+ 16.4 ± 1.5*+ 578.3 ± 47.5*+

*p<0.05 significant differences between vivarium control and hypokinetic groups of rats. Each of the hypoki-
netic groups was compared with their respective vivarium controls (UVCR vs UHKR and SVCR vs SHKR).
+p< 0.05 significant difference between supplemented and unsupplemented hypokinetic groups. 



Discussion 

Pre-hypokinetic tissue magnesium changes with and without magnesium
supplementation

During pre-HK, control and hypokinetic rats did not show any changes in muscle and
bone Mg2+ content, plasma Mg2+ level and Mg2+ loss in urine and feces. This is because
most Mg2+ was taken up for deposition and was used to great extent by tissues (10–13).
The stability of bone and muscle Mg2+ content, plasma Mg2+ level and Mg2+ loss in urine
and feces show that Mg2+ is readily bound to bone and muscle (10–13). This was more
clearly expressed in supplemented than in unsupplemented rats because with the higher
Mg2+ intake, tissue Mg2+ content, plasma Mg2+ level and Mg2+ loss did not show any
changes. During pre-HK, Mg2+ content in bone and muscle with differences in their
weight-bearing supporting function and morphology did not show any changes with or
without Mg2+ supplementation because the consumed Mg2+ was taken up for deposition
and was used to great extent by the body which protected tissue from any changes. 

Hypokinetic tissue magnesium changes with and without magnesium
supplementation

Tissue Mg2+ depletion during normal muscular activity is usually accompanied by a lower
Mg2+ loss, while tissue Mg2+ depletion during HK was always accompanied by a higher
Mg2+ loss. The greater Mg2+ loss with tissue Mg2+ depletion shows reduced Mg2+ deposi-
tion because electrolyte loss cannot occur with tissue electrolyte depletion unless electro-
lyte deposition decreases (8–15). Decreased Mg2+ deposition is related to several factors:
the reduced fluid volume, impaired energy production, enzyme deficiencies, sodium pump
and membrane cell changes, etc. Higher bodily Mg2+ loss with tissue Mg2+ depletion dur-
ing HK indicates a different kind of mechanism than those involved in the lowered Mg2+

loss with tissue Mg2+ depletion during normal muscular activity. During the initial days
of HK, bodily Mg2+ loss (with tissue Mg2+ depletion) could have been due to hypokinetic
stress (1, 2). In subsequent days, bodily Mg2+ loss with tissue Mg2+ depletion could have
been due to decreased Mg2+ deposition and/or HK (10–13). As duration of HK increased,
both the bodily loss of this ion and its depletion in the tissue become greater. This indi-
cates that Mg2+ deposition mechanism continues to deteriorate under HK. Since the Mg2+

deposition mechanism is not functioning properly, tissue Mg2+ content cannot be normal-
ized by alteration of Mg2+ intake alone (10–13). Other data available indicate that tissue
electrolyte depletion cannot be normalized unless muscular activity resumes (8–15).

With higher tissue Mg2+ depletion, the higher Mg2+ loss in SHKR than in UHKR is at-
tributable to a more degraded Mg2+ deposition capability in SHKR than in UHKR, be-
cause with the higher tissue electrolyte depletion, the lower electrolyte deposition and the
higher electrolyte loss followed (11–15). Since SHKR with higher tissue Mg2+ depletion
lost more Mg2+ than UHKR, SHKR were experiencing lower Mg2+ deposition than
UHKR. The fact that with tissue Mg2+ depletion Mg2+ loss increases more in SHKR than
in UHKR supports the view that SHKR were experiencing a more degraded Mg2+ depo-
sition capability than UHKR.With tissue Mg2+ depletion the differences in Mg2+ loss
among SHKR and UHKR, shows that Mg2+ deposition decreases more in SHKR than in
UHKR. However, it is unknown for what reason SHKR with higher tissue Mg2+ depletion
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and higher Mg2+ intake would have shown higher Mg2+ loss than UHKR. It is possible that
the higher Mg2+ intake accounts for higher Mg2+ loss with lower tissue Mg2+ content in
SHKR than in UHKR (11–15) because SHKR (with lower tissue Mg2+ content) had lost
more Mg2+ than UHKR. It has also been shown (13, 14) that excessive electrolyte intake
contributes to the decrease in amino acid pool in the blood and this decrease aggravates
the impact of HK in causing Mg2+ loss. The fact that SHKR showed lower tissue Mg2+

content and higher bodily Mg2+ loss than UHKR indicates that the more Mg2+ is ingested,
the lesser is Mg2+ deposition and the lesser Mg2+ deposition, the higher the bodily Mg2+

loss. This resembles a vicious circle: i.e., the higher Mg2+ intake, the lower its deposition;
the lower is Mg2+ deposition, the greater the Mg2+ loss. As more Mg2+ is removed from
the blood, it cannot help to correct tissue Mg2+ depletion.

Rats with and without Mg2+ supplementation show a significantly lower Mg2+ content
in bone and muscle with differences in their weight-bearing supporting function and mor-
phology as compared with control rats. The severity of muscle and bone Mg2+depletion
was different in right femur and gastrocnemius muscle which have a different weight-
bearing supporting function and morphology. The Mg2+ content decreased more in gas-
trocnemius muscle with less weight-bearing supporting morphology and function than in
right femur with more weight bearing supporting function and morphology. Normally,
electrolyte content decreases more in bone and muscle that have a weight supportive
heavier function and morphology. The mechanism by which Mg2+ decreases differently in
bone and muscle with different weight-bearing supporting function and morphology is
unclear. There are grounds to indicate that tissue electrolyte level decreases more with
than without electrolyte supplementation (8–15) and that electrolyte content decreases
more in muscle and bone with less weight-bearing supporting function and morphology
(17–19). This is ensured by the differences in electrolyte intake and electrolyte deposition
which could have decreased more in tissue with less weight-bearing supporting function
and morphology. 

Skeletal muscle cell injury mechanisms of magnesium loss with tissue magnesium
depletion

The potential mechanisms of HK-induced Mg2+ loss with tissue Mg2+ depletion may be
related to many factors primarily to the energy depletion, cell injury, enzyme deficiencies
and are as follows. The change from increased to decreased muscular activity results in
redistribution of fluid in the body (8, 14, 15). This could be attributable to the absence of
muscular activity (8, 14, 15). Fluid redistribution leads to decreased blood volume and
thus to hyperelectrolemia (8, 14, 15). This leads to the reverse reflex increase of electro-
lyte loss with hypovolemia and tissue electrolyte depletion (8, 14, 15). Because electro-
lyte loss develops with hypovolemia and tissue electrolyte depletion, it occurs in the
nature of a reverse fluid and electrolyte volume regulating reflex (20). However, the mech-
anism of electrolyte loss with tissue electrolyte depletion and hypovolemia has not been
established. It has been assumed that fluid redistribution which results in the decreased
blood volume could potentially lead to the hyperelectrolemia and electrolyte loss with tis-
sue electrolyte depletion (8, 14, 15). The decreased blood volume can also result in skele-
tal muscle cell injury which alters the integrity of the sarcolemma and leads to the
eventual release of intracellular contents into the plasma (8, 14, 15). The process also in-
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cludes inadequate blood perfusion and decreased electrolyte deposition. This could have
been one of the potential mechanisms for the Mg2+ loss with tissue Mg2+ depletion and
hypovolemia during prolonged HK.

During HK there is no need to split adenosine triphosphate (ATP) as a source of energy
for muscle contraction (3, 4). Because there is no need to split ATP there is no forma-
tion of ADP (adenosine diphosphate). The ADP is a stimulator of oxygen uptake and for-
mation of new ATP molecules in the course of oxidative phosphorylation a process
which is drastically decreased (3, 4). The reduction of mitochondrial number and/or
function suggested as the most likely culprit to explain the decreased oxidative phos-
phorylation. Because there is very little creatine phosphate there is very little release of
energy to cause bonding of a new phosphate ion to ADP to reconstitute the ATP. There
is limitation of reserves of ATP due to inhibition of formation of ADP and decreased syn-
thesis of ATP. The ATP becomes energetically less efficient, and for the production of
ATP more substrates are used, which causes even greater shortage of the already sparse
reserves of ATP (3, 4). Any condition which directly or indirectly impairs the production
or use of ATP by skeletal muscle, or leads to ATP depletion can result to cell injury. The
process includes inadequate blood perfusion due to HK-induced hypovolemia. The HK
can also indirectly affects the skeletal muscle cell (16), thereby interfering with produc-
tion or use of ATP (3, 4).

The intracellular substances and their associated positive ions tend to cause osmosis of
water to the interior of cell all the time. If some factors should not overcome the contin-
ual tendency of water to enter the cell, then the cell would eventually swell. During nor-
mal muscular activity, this sodium transport mechanism opposes this tendency of the cell
to shrink by continually transporting sodium to the exterior that initiates an opposite os-
motic tendency to move water out of the cell. However, during HK this function of the
sodium pump aimed at preventing the swelling of cells is decreased (21, 22) and sodium
transport mechanisms cannot overcome the continual tendency of water to enter the cell
and the cell eventually shrink (21, 22). When energy from ATP is not enough (3, 4) to
keep the sodium pump operating properly the cell mass decreases (21, 22). The ATP de-
pletion may inhibit the Na+-K+ pump since there is a significant correlation between the
Na+-K+ pump and ATP depletion. The decreased cell mass results in the diminished hold-
ing capacity for Mg2+ which leads during this condition to the Mg2+ loss with tissue Mg2+

depletion (11–15). Thus, Mg2+ supplementation would fail to prevent tissue Mg2+ deple-
tion when muscular activity restricted allowing cell mass to shrink further (21, 22).

During HK a change in the sarcolemma develops (16). A change in viscosity of sar-
colemma is caused by the activation of phospholipase A. This results in the higher per-
meability of the sarcolemma, permitting leakage of intracellular contents, and increase in
the entry of sodium (Na+) ions into the cell. The increase of intracellular sodium ion con-
centration activates Na+, K+-ATPase, a process which requires energy when there energy
production is decreased (3, 4). This and the impaired synthesis of ATP eventually exhausts
the supplies of ATP and thus decreases cellular transport (23). The increase of the cellu-
lar Na+ level leads to accumulation of intracellular calcium (Ca2+) level, which activates
neutral proteases within the cell, causing further cellular injury (24). However, it has been
suggested that irrespective of mechanisms involved, there is a final common pathway (8,
14, 15) namely during HK the intracellular Ca2+ increases significantly. This increases the
activity of intracellular proteolytic enzymes, leading to the further destruction of intracel-
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lular structures. Increase of intracellular free Ca++ plays an important role in deterioration
of cell structure that occurs during ATP depletion. On the other hand a form of indepen-
dent cell injury due to glycine deficiency has been shown. 

Severe K+ depletion, especially that associated with significant reduction in the intra-
cellular muscle K+, has been implicated in the development of hypokinetic-induced hy-
perelectrolemia. The glycogen synthesis is impaired in tissue K+ depletion as well as
during HK while de novo synthesis of glycogen is inhibited (25), leading to the decreased
energy production (3, 4). The tissue K+ depletion has been shown experimentally to de-
crease muscle cell transmembrane voltage and to cause muscle damage (26), thereby in-
terfering with the electrolyte deposition. 

The Mg2+ loss with tissue Mg2+ depletion may also be associated with Ca2+ and K+

changes because Mg2+changes are closely linked to Ca2+ and K+ changes. The Ca2+ flux
across the cell membrane is regulated by Ca2+, Mg2+-ATPase pump and tissue Mg2+ de-
pletion leads to the higher intracellular Ca2+ level and Ca2+ influx across external cellu-
lar membrane which plays a crucial role in regulation of cellular excitation, contraction
and impulse propagation. Studies on the Ca2+ fluxes across cell membrane have shown
this because Mg2+ changes are closely linked to the Ca2+ and K+ changes (8, 14, 15).
Since Mg2+ is transported by all cell membranes in much the same manner as Na+ and
K+ and because HK affects Na+ and K+ transport by all cell membranes this would also
affect Mg2+ transport in the same manner as that of Na+ and K+. This eventually leads to
higher Mg2+ loss with tissue Mg2+ depletion. Irrespective of the mechanisms involved,
there is a common factor, namely with tissue Mg2+depletion the Mg2+ deposition de-
creases which leads to Mg2+ shifting into plasma and Mg2+ loss with tissue Mg2+ deple-
tion (8, 14,15). The Mg2+ loss increases with tissue Mg2+ depletion and supplementation
of Mg2+does not alter the tissue Mg2+ because Mg2+ deposition cannot be restored dur-
ing HK unless muscular activity is restored (8, 14, 15). Failure to prevent tissue Mg2+ de-
pletion with Mg2+ supplementation shows that tissue Mg2+ depletion is not a matter of
Mg2+ shortage in the food as the inability of the body to deposit Mg2+. Evidence of de-
creased Mg2+deposition arises from the persistent increase of plasma Mg2+ level and
Mg2+ loss with Mg2+ depletion.

Conclusion

The higher tissue Mg2+ depletion in SHKR with higher Mg2+ intake than in UHKR with
lower Mg2+ intake shows that tissue Mg2+ loss is greater with higher Mg2+ intake. The
higher total bodily Mg2+loss in SHKR than in UHKR in turn shows that the bodily loss
of Mg is directly related to the magnitude of tissue Mg2+ depletion. The dissociation of
tissue Mg2+ depletion and bodily Mg2+ loss shows that reduced Mg2+deposition is the
main cause of tissue Mg2+ depletion. With enhanced tissue Mg2+ depletion, bodily Mg2+

loss would increase unless factors contributing to the decreased Mg2+ deposition are re-
versed. It is concluded that that tissue Mg2+ depletion increases more with higher than
lower Mg2+ intake and that bodily Mg2+ loss increases more with higher than lower tissue
Mg2+ depletion. In all, tissue Mg2+depletion is not due to Mg2+ shortage in the foods con-
sumed. Rather, it is due to the inability of the tissue to take up Mg2+ during HK.
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Abstract: According to the association-induction hypothesis, the core of living phenomena lies in
the long-range, one-on-many connectedness among all three major components of living proto-
plasm: protein, water and K+ (and the controlling agents, called the cardinal adsorbents.) This arti-
cle describes simple experimental models that could cogently test the theory of this connectedness
and its control by drugs and other cardinal adsorbents.

IN VOLUME, the largest component of all living cells is water; the next is proteins. In
number, the largest component is again water; but the next largest is K+. From these, one
concludes that the living cell is largely an assembly of water, proteins and K+. 

As part of what became known later as Ling’s fixed charge hypothesis (LFCH) (Ling
1962, p. 218), I first suggested in 1952 that on statistical mechanical and energy grounds,
K+ in living cells is not free as widely taught (Ling 1952.) Rather, all or virtually all K+

in living cells are in close-contact, one-on-one adsorption on the β-, and γ-carboxyl
groups carried respectively on aspartic and glutamic residues of intracellular proteins. In
a recent review (Ling 2005), I have shown that by the year 2005, this suggestion has been



fully verified by theoretical and experimental advances made in my own laboratory and
by others including the earlier work of Kern (1948) and later definitive work of Edelmann
(1977, 1980, 1983, 1998.) 

In 1965 I introduced another theory, called the polarized multilayer theory — later
modified to polarized-oriented multilayer theory (POM or PM) theory of cell water (Ling
1965.) In this theory, all or virtually all water molecules in most living cells are adsorbed
as polarized-oriented multilayers on the exposed NHCO groups on arrays of fully-
extended cell proteins. In two recent reviews, I have shown that here too progress in both
theory and experimental studies made in the preceding 39 years have fully verified the
validity of the POM theory (Ling 2004, 2006.)

Considering at once these two conclusions, one reaches a third conclusion. That is, the
three major components of the living cell — water, proteins and K+ — are in direct or in-
direct contact with one another. 

This is a landmark perception in the study of living phenomenon on its own merit.
More important, this conclusion affirms the association arm of the much broader unifying
theory of the living cell called the association-induction (AI) hypothesis, which I intro-
duced in 1962. And, it is the one and only (surviving) unifying theory of cell physiology
known then or now. The near-completion of the association aspect of the AI Hypothesis
already achieved shifts attention to the less extensively studied induction-arm of the AI
hypothesis, which actually also began in 1952 as part of the LFCH, when it addressed the
question, why is the K+ accumulated in living cells lost on cell death? What follows was
the answer offered. 

As an expression of an equilibrium phenomenon, this postulated (selective adsorption
and hence) accumulation of one ion (K+) over another (e.g., Na+) does not demand a con-
tinual energy expenditure as in the now completely disproved membrane-pump hypothe-
sis (Ling 1997.) Nonetheless, over the long run and in particular after work-performance,
metabolic energy is required to recharge the system back to its high (negative) energy-
low entropy resting living state (Ling 1962, p. xxii, 1992, p. 32, 2001, p. 154.) That
energy is provided by the adsorption of the ultimate end-product of aerobic and anaero-
bic metabolism, ATP. 

Figure 1, reproduced from my paper of 1952, shows diagrammatically how ATP ad-
sorption on controlling sites — later named “cardinal sites” (Ling 1962 p. 118, p. 420) —
electronically regulates and maintains the selective adsorption on β-, and γ-carboxyl
groups near and far — as part of the maintained resting living state. 

The electronic mechanism suggested in that 1952 paper can be called the direct elec-
trostatic effect or D-effect. In years following, this was modified to what is known as the
F-effect, incorporating both the D-effect mediated through space and inductive, or 
I-effect, mediated through intervening atoms (Ling 1962, pp. 57–58.) As more time went
by, however, it became clear that the inductive or I-effect plays the predominant role. 

How such a short-range inductive effect could be marshaled and organized to bring
about action at a distance and in a one-on-many manner became a central theme of the
association-induction hypothesis. 

With the introduction of the POM theory of cell water in 1965 (Ling 1965), it was sug-
gested that ATP does not just control and maintain the selective adsorption of (cationic)
partners of the β-, and γ-carboxyl groups like K+, ATP adsorption on cardinal site also
controls and maintains the polarization and orientation of all the bulk-phase water
molecules.

106 LING



And, it does so, according to the AI Hypothesis, by its action as an electron-withdraw-
ing cardinal adsorbent or EWC (for definition, see Ling 1992, pp. 144–145, Ling 2001,
pp. 167–168.) A mechanism was introduced and steadily improved to show how such an
EWC can produce a uniform, across-the-board electron reduction at a large number of 
β-, and γ-carboxyl groups, near and far (Ling 2001, pp. 171–175. For earlier versions see
Ling 1964 p. 254, Ling 1969, p. 45, Ling 1992 pp. 147–149.) In addition, it can at the
same time, produce an electron density reduction of the oxygen atom of a vast number of
backbone carbonyl groups (CO) of the CONH links near and far. The important conse-
quence of this change will be made clear below.

Somewhere along the way, the need to build a broader quantitative theory became ap-
parent. To that end, I began by introducing a parameter called the c-value (Ling 1958,
1961 p. 156, 1962 p. 58.) Measured in Ångstrom units, the c-value is roughly speaking a
measure of the effective density of electrons of the singly charged oxygen atom of an oxy-
acid group such as a β-, or γ-carboxyl group. 

(By analogy, a c’-value was introduced for the cationic charge of fixed cations including
the �-amino groups of lysine residue and guanidyl groups of arginine residues. A further ex-
tension was in the introduction of the c-value analogue for the oxygen atom of the CONH
peptide group and the c’ value analogue of the positively charge H atom of the CONH pep-
tide link (Ling 1962 p. 60.) Unlike the carboxyl and amino groups, these CO and NH groups
do not carry net electric charges and are bipolar. This means that the negative charges of the
oxygen atom of CONH groups are due to the lone pairs of electrons and thus seen only at
short range. The same holds for the positive charge due to the H atom of the NH component
of the NHCO group.)
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FIGURE 1. Diagrammatic illustration of the hypothetical unfolding of protein chains as a result of
the adsorption of ATP. (from Ling 1952, by permission of the Johns Hopkins University Press)



With the c-value defined, we went on to construct the so-called Linear Model and pro-
ceeded from there to compute the adsorption energies of the five alkali-metal ions (Li+,
Na+, K+, Rb+ and Cs+) in addition to H+ and NH4

+on β-, or γ-carboxyl groups at different
c-values. (NH4

+ is also seen as a prototype of the fixed cationic �-amino groups carried on
lysine side chains and guanidyl groups carried on arginine side chains.) The details of this
theoretical model was presented in the fourth chapter of my first book, A Physical Theory
of the Living State: the Association-Induction Hypothesis (Ling 1962.) This book has long
since been out of print. Since I own its copyright, I have reproduced this entire chapter as
an Appendix (Appendix 1) at the end of this article. 

Figure 2 — which is a copy of Figure 4-11 in Appendix 1 — indicates that for any pair
of any two monovalent cations, the relative preference indicated by a higher (negative) ad-
sorption (association) energy shown on the ordinate of the figure reverses itself sooner or
later as the c-value increases. However, for the simple objectives on hand, all we need to
remember here is that at low c-value, K+ is preferred over Na+; at higher c-value, Na+ may
be preferred over K+. 

A similar relation exists also between K+ and a fixed cation (i.e., �-amino group and
guanidyl group) but here the fixation of these fixed cations adds a favorable entropy ele-
ment in the bargain, making a fixed cation more preferred even when their respective 
−ΔE’s are equal. However, this entropy contribution due to salt-linkage formation be-
tween a fixed anion and a fixed cation is constant and does not change with c-value
change.

In 1981, another basic concept of the AI Hypothesis was made more quantitative (Ling
1981.) It shows that the electron density of the carbonyl oxygen of the polypeptide chain
— characterized by the c-value analogue mentioned above with the c-value — plays a
similar role as the c-value (of the β-, and γ-carboxyl groups) in deciding which one of the
alternative partners of adsorption is energetically favored. 

More specifically, the c-value analogue decides the preference of the backbone peptide
linkage for one or the other of the two alternative partners. These partners are respectively,
(i) the NHCO groups on the third amino acid residue up or down the same protein chain
(thus forming an α-helical fold) or (ii) multiple layers of water molecules. At high c-value
analogue the polypeptide chain prefers to form α-helical folds; at low c-value analogue,
the polypeptide chain prefers to adsorb multilayers of water molecules. 

In consequence of the c-value decrease and c-value analogue decrease brought on by
an electron-withdrawing cardinal adsorbent (EWC ) like ATP, the β-, and γ-carboxyl
groups would enhance its propensity toward adsorbing K+ (over Na+ or fixed cation) and
the backbone NHCO groups would prefer to stay fully-extended and adsorb multilayers
of water molecules. Figure 3 is the latest version of a series of more or less similar illus-
trations published between 1952 and 2001 (Ling 2001, p. 153.) 

Thus far, experimental testing of this model during the past forty years has been per-
formed mostly on intact living cells — where the physiological attribute involved deter-
mines what part of the cell and hence what kind of protoplasm is involved. The overall
results are highly encouraging and reviewed in a sister article soon to be published. The
title of that article is: Reinstating the (redefined) protoplasm as the physical basis of life
(Ling 2007.) 

However, to help gain a more and deeper understanding of the complex phenomenon,
it would be ideal if we could deal with a model system that is much simpler than a living
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FIGURE 2. The theoretically computed adsorption (association) energies in kilogram calories per
mole of H+, Li+, Na+, K+, Rb+, Cs+ and NH4

+ respectively on a singly charged oxyacid group with
a polarizability of 2.0 x 10−24cm3 and c-value as shown on the abscissa. An ion, say K+, which shows
a higher negative energy of adsorption of 8.3 kcal/mole on the fixed oxyacid anion at a c-value of
−4.0 Å is preferentially adsorbed over Na+ , which at the same c-value, shows a lower negative ad-
sorption (association) energy of 3.3 kcal/mole. However, at a higher c-value of −2.5 Å, the prefer-
ence is reversed since at this c-value, the negative adsorption energy of Na+ at 14.3 kcal/mole is
higher than that of K+ at 13 kcal/mole. (from Ling 1962, the relevant chapter 4 is attached to the
end of the article as Appendix 1)



cell. In theory, the ideal model would contain all the key elements of the protoplasm ac-
cording to the AI Hypothesis. They include the polypeptide chain and functional groups
on short side chains, in particular, the β-, and γ-carboxyl groups, their alternative partners
(K+ , Na+ , fixed cations) and the alternative partners for the backbone NHCO groups, i.e.,
other CONH groups, three amino acid residues up or down the chain and bulk-phase
water molecules. 

It may produce a moment of disbelief to realize that all these requirements are present in
an aqueous solution of a protein plus KCl or NaCl. All with the exception of one missing
player, the cardinal site. So we will have to invent one. It is our next task to describe how.

1.0 Inventing a cardinal site

Inventing the cardinal site — which includes what are widely known as receptor sites (for
drugs and hormones) — begins with a postulation. It says that all real-life cardinal sites
are made of the same ingredients that make up proteins. In other words, each cardinal site
is a gathering of different or similar amino acid side chains and stretches of the polypep-
tide chain posed in a geometric configuration. 

On the basis of this postulation, we would suggest that many pure proteins may con-
tain within their normal primary structure segments of the protein chain that have the po-
tential of acting fully or in part like real-life cardinal sites of one kind or another seen in
living protoplasm. As a result of this fortuitous event and the fundamental attributes and
activities of living protoplasm seen in the light of the association-induction hypothesis, re-
action of these proteins with real-life cardinal adsorbents might produce long-range, one-
on-many impact on distant sites of the protein. For convenience of discussion, I shall call
these sites, pseudo-cardinal sites (PCS). Having said that, I must add that only future
study can determine if a pseudo-cardinal site demonstrated is truly pseudo. 

With the only missing component of the ad minimum protoplasm model made up in
theory by the invented pseudo-cardinal sites, our next task is to lay out outlines of how
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FIGURE 3. Diagrammatic illustration of how adsorption of the cardinal adsorbent ATP on the ATP-
binding cardinal site and “helpers” including the congruous anions (shown here as “adsorbed con-
gruous anions”) and Protein-X (shown here as Z) unravels the introverted (folded) secondary
structure shown on the left-hand side of the figure. As a result, selective K+ adsorption can now take
place on the liberated β-, and γ-carboxyl groups (shown on the right hand side figure as “carboxyl
groups”) and multilayer water polarization and orientation can now occur on the exposed backbone
NHCO groups and the resting living state is thus achieved and maintained. (from Ling 2001) 



to test the theory of protoplasmic coherence and connectedness and all its basic postula-
tions in experiments simple enough to be done by the real vanguard of future cell physi-
ologists worldwide rich or poor as they may be.

2.0 Testing for the existence of “pseudo-cardinal sites” (PCS) and 
(if they do) how they can interact with one or more specific real-life 
cardinal adsorbents and bring about the predicted one-to-many, from-
here-to-there response in the simplest model of protoplasm suggested

In theory, the successful binding of a cardinal adsorbent onto a “psudo-cardinal site” on
a protein molecule could create an across-the-board change of the electron density and
hence the preferred partners of the backbone peptide groups and of all functional groups
on short side chains. This then provides the basis for the new kind of experimental test-
ing outlined below.

2.1 Functional groups on short side chains

The most prominent among these functional groups on short side chains are the β-, and
γ-carboxyl groups because they are most numerous in many isolated proteins, usually
making up about 10% of all the amino acid residues of the protein (see Table 0-2 on page
xxvii in Ling 1962 and also Ling 2007.) One advantage offered by its high concentration
lies in greater ease in detecting small changes. For this reason, we will begin with the
study of the β-, and γ-carboxyl groups. Once we have gained some experience in follow-
ing this new approach, we can then look into other functional groups on short side chains.
They may include SH groups on cysteine side chains, phenol on tyrosine side chains,
tryptophane on phenylalanine side chains and even prosthetic groups like heme anchored
onto imidazole groups on histidine side chains. But all that is on a future menu. 

Let us begin with the mono-valent cation that is most strongly adsorbed on the β-, and
γ-carboxyl groups, H+. Figure 2 shows how the binding energy of this ion increases or de-
creases sharply with changing c-value. If both the fundamental theory of molecular con-
nectedness of protoplasm and the postulation that many isolated pure proteins contain
PCS that react with real life cardinal adsorbents, then one would expect that the exposure
for a suitable duration of time of say 10.0 ml of a 0.5% solution of protein X would lead
to a change of the association constant, KH, of the β-, and γ-carboxyl groups of the pro-
tein. What that could tell is that that PCS acts as a EWC or EDC. The basic method used
in determining the acid binding constants is by the titration method used, for example, by
Foster and Sterman (1956) in their study of the effect of urea upon the pKa values of
bovine serum albumin. The employment of a truly good pH electrode is vital. 

Since the total amount of the drug or cardinal adsorbent added to the solution is known,
comparison with the number of the β-, and γ-carboxyl groups that have altered their KH

could yield information of the extent of the one-on-many factor demonstrated. Additional
insight can be obtained by including in the protein solution either KCl or NaCl as follows.

As pointed out above, with c-value rise or fall, the preference of the β-, and γ-carboxyl
groups for either K+ or Na+ could reverse itself as shown in Figure 2. One can experi-
mentally investigate the impact of a drug or cardinal adsorbent on a protein X by moni-
toring the acid binding constant KH as described in the preceding section, only the
solution beside the protein will also contain say 25 mM of either KCl or NaCl. Since K+
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and Na+ compete against H+ for the same β-, and γ-carboxyl groups, the apparent KH de-
termined would be affected. From the observed changes, one can calculate the relative ad-
sorption constants of both K+ and Na+. And from their relative magnitude, one can easily
determine whether that drug (or cardinal adsorbent) behaves as an electron donating car-
dinal adsorbent (EDC) or an EWC and how effective they are in either capacity.

2.2 Bulk-phase water molecules

According to the polarized-oriented multilayer (POM or PM) subsidiary theory of the AI
Hypothesis, the exposed NHCO groups of fully extended protein chains could polarize
and orient the bulk phase water molecules to varying degree. Thus, if a drug or other car-
dinal adsorbent brings about a change in the c-value of the β-, and γ-carboxyl groups of
a protein X, it is expected that the surrounding bulk-phase water molecules would also
undergo extensive changes. The following outline shows one experimental approach to in-
vestigate these predicted changes, including the validity of the postulation of pseudo-
cardinal sites

The basic method planned is the equilibrium dialysis method such as that employed in
many similar studies made in our laboratory in the past (Ling and Ochsenfeld 1989, Ling
et al 1993.) In general a much higher concentration of protein X is needed for dialysis
studies than for the β-, and γ-carboxyl group studies described in the preceding section.
And, for the same reason, the choice of the protein would have to be limited to very in-
expensive varieties available. For probe molecules, two most useful ones would be Na+

(Cl−), sucrose (or trehalose, which is more stable than sucrose.) In order to determine the
true equilibrium distribution coefficient or q-value (rather than the apparent equilibrium
distribution coefficient or ρ-value), a plot of the final equilibrium concentration of the
probe inside the dialysis sac against the final equilibrium concentration in the external so-
lution is required. If a straight line if obtained, the slope of the line equals the q-value of
that probe in the protein solution inside the sac (for example, see Ling et al 1993.) The
lower the q-value obtained, the clearer it shows a cogent connectedness between the PCS
and the farthest water molecule in the sac. Insight gained in recent times from our exten-
sive studies on solute distribution in living cells as well as model systems would provide
valuable guideline in interpreting the data obtained (Ling et al 1993, Ling and Hu 2004,
Ling and Fu 2005.)

I thank Dr. Raymond Damdian and the Fonar Corporation, Inc. and its many capable and helpful members, in
particular, our Librarian, Anthony Collela and Director of Media and Internet Services, Michael Guarino. I also
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4.1. Introduction—The 1951–52 Model 

In 1951 and 1952, the author presented a version of the present hypothesis. According to
this early version, selectivity of one alkali-metal ion over another is achieved by a differ-
ence in association energy and by an enhanced degree of ionic association through fixa-
tion of one species of ion; the fixed ions were called “fixed charges.”

In the early model, the author followed Bjerrum’s theory of ion-pair formation (1926).
The treatment differed from that of Bjerrum in that it included the effect of dielectric
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saturation, a phenomenon of particular importance to the present case. If dn is the aver-
age number of counterions within a spherical shell of thickness dr and at a distance r from
the center of a fixed ionic group, then 

Here N� is the number of counterions in the volume V; Zl and Z2 are the valences of the
charges; � is the electronic charge; k is the Boltzmann constant; T is the absolute temper-
ature; and D(r) is the effective dielectric value, which varies with r as a result of the freez-
ing in (dielectric saturation) of the water molecules in the intense field immediately
surrounding an ion (Sack, 1926, 1927; Debye, 1929; Webb, 1926; Hasted et al., 1948;
Grahame, 1950). We considered pdr,

as the probability of finding a counterion within the shell. Using the values of 2.0Å for
the radius of the hydrated K+ ion and 2.8Å for the hydrated Na+ ion and a microcell ra-
dius of 20Å, we estimated a selectivity ratio K+/Na+ of 7. The details of this calculation
are given in Appendix C; Figure 4.1 presents the results. We have reproduced Bjerrum’s
curve showing the probability of finding a cation in a shell rÅ (abscissa) away from the
anion as part B of this figure. The shaded area corresponds to the volume within the
microcell of 12Å radius illustrated in part A. 

This earlier model served many useful purposes, but the theory, as such, had serious
limitations. First, despite its general acceptance (Fowler and Guggenheim, 1939; Harned
and Owen, 1958; Kortüm and Bockris, 1951), the concept of hydrated ionic radii lacks
clear physical significance. The hydrated ionic radius is usually only a few tenths of an
angstrom unit larger than the crystal radius although a single water molecule is 2.7Å in
diameter (see Appendix C; interpretation according to the present model is given in Sec-
tion 4.4D). The use of the hydrated ion concept thus prevented quantitative improvement
of the model. Second, the rigidity imposed upon the theory by the acceptance of a set of
hydrated diameters of constant magnitude, and hence a fixed order of preference for dif-
ferent ions, is at variance with an increasing amount of evidence demonstrating the vari-
ability of ionic preference. 

It was not until some years after 1952 that I became aware of any system, living or non-
living, that shows an unequivocal selective ionic accumulation of alkali-metal ions in any
order other than K+ > Na+. Thus my early model seemed adequate. In the years that fol-
lowed, however, it gradually became clear that, in a number of other systems in which
ionic selectivity is a matter of greater simplicity, different and opposite orders of prefer-
ence exist. Investigators. in these fields had, in fact, already offered qualitative explana-
tions to account for the diverse orders of preference observed for the monovalent cations. 

Following the work of Wiegner and Jenny (1927), Jenny (1932) concluded from studies
of clays and permutites that “the observed irregularities in the lyotropic series of natural
aluminum silicates may be interpreted as various stages in the reversal of the normal
hydration order of the exchanging cations. From the viewpoint of hydration of ions, it is
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logical to connect the reversal of the lyotropic series with a dehydration of ions.” Bun-
genberg de Jong (1949) ascribed the difference in the order of selectivity for different ions
among systems possessing unlike functional groups to the different polarizabilities of
these groups (see also Bregman and Murata, 1952; Bregman, 1953). After Eisenman et al.
(1957),* as quoted by Isard (1959), postulated that the variation in the lyotropic series was
due to a change in the electrostatic field strength of the fixed anionic sites, a convincing
system could be erected to explain the selectivity orders observed in nature. These inves-
tigators hypothesized that with the increase of the field strength the interacting cations
would lose their hydration shells in an orderly fashion, the least hydrated cations losing
their hydration shells first.† 

Eisenman and co-workers postulated eleven orders out of the 120 possible permutations
for the five alkali-metal ions. They then showed that these eleven orders could account for
a large number of the “irregular” lyotropic orders encountered in various ionic studies.**
This hypothesis led to refinements in the calculation of the association energies of the var-
ious ions mentioned in the introduction (for an abstract, see Ling, 1957). 

4.2. The Present Model 

A. THE DEFINITION OF c- AND c′-VALUES AND THEIR ANALOGUES 

Acids bearing the same carboxylic groups may have widely varying acid-dissociation
constants: the pK value of acetic acid is 4.76, but the pK value of trichloroacetic acid is
less than 1.0; the pK value of the carboxyl groups of uncharged glycine NH2CH2COO− is
4.30 (Edsall and Blanchard, 1933), that for the charged glycine NH3

+CH2COO− is 2.31
(Zief and Edsall, 1937). Thus, although the three substituent chlorine atoms of
trichloroacetic acid and the amino group of glycine are spatially separated from the dis-
sociating carboxyl group, they markedly weaken the attractive force between the carboxyl
group and its proton. This phenomenon is called the inductive effect. 

G. N. Lewis in 1916 and 1923 proposed that the inductive effect is a result of an elec-
trical dissymmetry caused by the unequal sharing of electrons between unlike atoms.
Pairs of shared electrons are thus displaced without being dissociated from their original
atomic octets; this produces a similar displacement in the next link and the effect is prop-
agated along a multiatomic molecule. The electronegativity of an atom or group in a mol-
ecule is the measurement of the tendency of this atom or group to draw electrons toward
itself (Pauling, 1948). Substitution of hydrogen atoms by the more electronegative chlo-
rine atoms, as in trichloroacetic acid, leads to withdrawal of electrons from an attached
residue and hence a reduction of electron density in it. This is a negative inductive effect,
− I-effect. The NH3

+ group which is electronegative also exerts a − I-effect. Substitution
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* The theories of Jenny and Bungenberg de Jong, as well as that of Eisenman, and coworkers, up to 1957
all dealt with the effects of hydration and dehydration in a qualitative manner. In deriving a quantitative theory
one must take into account the effects of dielectric saturation as well as the hydrated diameters; only in this way
can a significant selectivity between K+ ion and Na+ ion be theoretically derived. 

† This order of dehydration is the reverse of that envisioned by Jenny (1932); he stated that the most hy-
drated ion will be the first affected by the dehydration process.

** Eisenman (1962) has summarized the views of these authors.



of hydrogen by less electronegative groups releases electrons and increases the electron
density of a connected atom creating a + I-effect (Ingold, 1953). 

The inductive effect is an electrostatic effect mediated through intervening atoms and
intimately dependent upon their number, polarizability, and other characteristics. Another
electrostatic effect emanates from substituent groups and is transmitted through space
along the axis of shortest separation of the interacting atoms. This is called a direct effect,
D-effect. The difference between the acid dissociation constants of acetic acid and of
glycine may be accounted for by the combined D-effect and I-effect, together termed the
F-effect. This nomenclature, used mostly by European authors (see Hermans, 1954), has
been adopted in this monograph for its simplicity. 

Let us begin with a singly charged and isolated oxygen ion O− and assume that it is as-
sociated with a monovalent cation G+ (Figure 4.2A). Let us also assume that the equilib-
rium distance between the “center of gravity” of the extra electron of this singly charged
oxygen and the geometrical center of the cation is rf. We now build up a complex mole-
cule such as that shown in Figure 4.2B, bearing one or more chains of varying dipolar
groups as well as single charges. These groups interact with the cation G+; their interac-
tion energy may be analyzed and resolved into three terms. 

(1) Direct electrostatic effects produced by charge-bearing monopolar or dipolar groups
and transmitted through the shortest spatial distance. Resolving the dipoles into single
charges one may represent this class of effects by 

Here ZG and Zi are the valences; � is the electronic charge; ri is the shortest distance in
space between the charge-bearing group and the center of the cation G+; and Di is the ef-
fective dielectric constant for that particular interaction. 

(2) The I-effect, which produces induced dipoles along the whole molecule. The in-
duced dipoles may again be resolved into single charges and absorbed in the first term. 

(3) The I-effect and the M-effect (mesomeric or resonance effect), which create a
change of electron density and a displacement of the center of gravity of the electron
cloud of the oxygen atom on the functional group. This displacement of the center of
gravity of the functional group is analogous to other induced dipoles mentioned under (2);
it too will be absorbed in the first term. The varying electron density may be represented
by a varying charge ��, where � is a positive number and � is the electronic charge lo-
cated at a distance rf from the center of the cation G+. Df is the effective dielectric con-
stant within this distance. The net effect corresponds to the sum of (1) the D-effect, and
(2) and (3), the I-effects:

Although the detailed meaning of this expression may be quite complex, its net effect
is an increase, a decrease, or no change in the energy of interaction between the anion and
the cation G+. Exactly the same increase or decrease may be simulated by assuming a
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constant unit excess charge (valence electron) on the anion and by moving this excess
charge along the rG axis toward or away from G+. This change in the separation of the unit
excess electron from G+ may be represented in angstrom units; it will be called c. The dis-
tance c is positive if the excess electron is displaced toward G+, negative if it is displaced
away from G+. Thus, the total separation, as shown in Figure 4.2, will be rf − c. We may
then set ZG�2/ (rf − c) equal to the combined actions of the three terms above. Cancelling
ZG�2 and rearranging, we have the definition of. the c-value:
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FIGURE 4.2. The definition of the c-value.



In this treatment, the c-value is defined to be independent of the nature of the cation G+

and its exact location. That part of the interaction which does depend on the nature and
location of G+ is absorbed in another variable, the group polarizability α (see Section 4.3A). 

A fall of the c-value (a change from 0 to −1Å) parallels a decrease in the electron den-
sity of the functional group; for example, acetic acid (a weak acid) → trichloroacetic acid
(a strong acid). A rise of c-value parallels an increase of electron density; for example,
trichloroacetic acid → acetic acid. A c′-value may be formulated for a change in the den-
sity of the excess positive charge on an amino group; we use a hypothetical NH3

+ group.
Here, a rise of c′-value parallels a decrease of electron density and a fall of c′-value par-
allels an increase of electron density. 

We can broaden the concepts of the c- and c′-values so that their application will in-
clude proton-accepting and proton-donating groups such as alcoholic, amide, ester, and
ether groups as well as charged or dipolar groups other than O− and NH3

+. In these cases,
the particular group is matched by a hypothetical. singly charged O− or NH3

+ group with
the equivalent c- and c′-values. These values are then called the c- and c′-analogues of
these different groups. 

B. THE LINEAR MODEL AND THE FOUR CONFIGURATIONS 

Having defined the c-value, the c′-value, and their analogues, let us insert a hypothetical
cylindrical cavity in a microcell of a fixed-charge system. One end of the cavity encloses
a negatively charged oxyacid group, represented as a negatively charged oxygen atom
(Figure 4.3). Adjacent to the oxygen atom and near the middle of the cavity, we place a
cation; farther away, we place two water molecules in a linear array. This configuration is
called configuration 0. We then insert, between the fixed anion and its countercation, one,
two, and three water molecules successively and call these configurations, respectively,
configurations I, II, and 111.* We assume that all the water molecules within this cavity
are completely frozen in (dielectrically saturated) and that variation of polarization out-
side the cavity from one configuration to another may be neglected. 

C. THE VALUE OF THE DIELECTRIC COEFFICIENT D 

Dielectric saturation in the immediate vicinity of an ion has long been recognized (Sack,
1926, 1927). According to the Debye theory of dielectric saturation (1929), the radial di-
electric coefficient has a constant value of 3 in the space extending from the center of a
monovalent ion radially to a distance of about 3Å, where it begins to rise gradually to the
macroscopic value of 81, at about 16Å. The more recent calculations of Hasted et al.
(1948) and of Grahame (1950) show a more abrupt rise of dielectric coefficient immedi-
ately beyond the first layer of water. Nevertheless, the consensus of opinion is that the first
layer of water is almost completely saturated dielectrically. 

Hasted assumed that the first layer of water around an anion is much less saturated than
the first layer around a cation. This opinion is quite widely held (Hasted et al., 1948;

* There is not enough room to accommodate the two water molecules distal to the anion within the microcell
of 20Å radius. However, the linear arrangement is a model of the three-dimensional system in which water mol-
ecules are joined, not end-to-end, but in a zigzag. In that case, the problem disappears. Calculations were also
made with the two distal water molecules removed from the model; the results showed no significant change ex-
cept that the crossover points, to be discussed later, occurred at lower c-values.
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Grahame, 1950). I adopted this assumption in my treatment of the 1951–52 model; how-
ever, little experimental evidence exists to support this view. Lorenz and Posen (1916)
presented measurements of the mobilities of a large number of polyatomic organic anions.
Applying Stokes’ law, they calculated the effective volume of the ions and then compared
these effective volumes with the molecular volume and concluded that no room could be
left for an additional layer of water. Judging from the uncertain applicability of Stokes’
law and the large ionic size, one sees no conclusive evidence for a general lack of hydra-
tion around anions, although the particular contention of these authors may prove correct.
On the contrary, anions are known to possess both greater heats of hydration and greater
entropies of hydration than cations of equal size; for example, K+ (crystal radius = 1.33Å)
has a ΔH of −75 kcal/mole and a ΔS of −11 cal/deg/mole; the corresponding values for F−

(crystal radius = 1.36Å) are −121.5 kcal/mole and −26 cal/deg/mole, respectively (Kete-
laar, 1953, Table 13; Verwey, 1942). Water molecules oriented in the first hydration shell
of an anion should thus be more rigidly frozen and have less freedom than water mole-
cules around a cation of equal size. We may conclude that the first layer of water in im-
mediate contact with either anions or cations is dielectrically saturated. Therefore, the
water molecules between the anionic oxyacid group and a cation in configurations I and
II should be completely saturated. 

122 LING

FIGURE 4.3. The linear model. The interaction energies were calculated for each of the monova-
lent cations in each of the four configurations of fixed anions and water.



The third water molecule in configuration III, found between the two water molecules
immediately adjacent to the carboxyl group and the cation, should also be completely sat-
urated dielectrically. The following facts suggest that this middle water molecule is more
polarized than any second-nearest neighboring water molecule around a single isolated
cation or anion: (1) The interaction between the permanent dipole moment of a water
molecule and the cation and that between the permanent dipole moment of the water mol-
ecule and the anion are additive. (2) The interaction between induced dipole and perma-
nent dipole and that between induced dipole and induced dipole are enhanced through
reinforcement of cationic and anionic induction. (3) These effects combine to shorten the
equilibrium distances between the interacting molecules and ions, and thereby secondar-
ily further intensify the cohesive forces of all these as well as those of the London dis-
persion energies. 

4.3. Calculation of the Association Energies and Distribution Ratios 

The difference in thermodynamic internal energy between the appropriately defined asso-
ciated and dissociated states (ΔE = Eassoc − Edissoc) is represented by ΔE, which is usually
a negative quantity. The terms “association energy” and “dissociation energy” are both
used in this monograph. These energies are equal in absolute magnitude but differ in sign.
We have chosen to represent the association energy by ΔE; the dissociation energy, then,
is given by −ΔE. We use the terms “adsorption energy” and “association energy” as syn-
onyms. Having presented the basic assumptions of the linear model, we can calculate the
association energy ΔE for each cation at varying c-values. Two steps are involved in this
process; first, given a cation, a particular c-value of the fixed anion, and an unlimited num-
ber of water molecules, we want to find the statistical probability of having no water mol-
ecule, one water molecule, two, or three water molecules between the cation and the fixed
anion pair; that is, we want to determine the probability of finding each of the configura-
tions 0, I, II, III. To evaluate this, we must find the total of all energies between cation and
anion, between ions and water, between water and water on an absolute basis for each
configuration. By comparing the total energies of the various configurations, we can cal-
culate their relative abundance at a given temperature. Having found this, we can calcu-
late the association energy ΔE for each particular cation in its particular statistical
distribution (for example, 95 per cent in configuration III, 4 per cent in configuration II,
and 1 per cent in configuration I). The association energy ΔE is the difference between the
energy of the cation in the fixed-charge system as a counterion of a fixed anion of a given
c-value and the energy of the same cation in an infinitely dilute solution at an infinite dis-
tance. In a truly accurate three-dimensional model, ΔE could be obtained by comparing
the energy calculated from the first step, properly weighted statistically, with the experi-
mentally measured energy of the hydrated cation extrapolated to infinite dilution. Since
we have only a linear model, this comparison cannot be made; instead we use the charg-
ing method of Born (1920). Since the major energy difference between the associated ion
pair and the dissociated ion pair is the electrostatic interaction energy between the cation
and the fixed anion, we can determine the approximate ΔE by evaluating the work done
in bringing the cation from infinity to the particular equilibrium location estimated in the
first part of our calculation. Once the association energies have been evaluated we can find
the macroscopic equilibrium distribution ratios between various ion pairs. 
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In succession, the terms on the right-hand side of the equation represent (1) the classical
energy of interaction between charge and charge, (2) the energy of interaction between
charge and permanent dipole, (3) the energy of interaction between charge and induced
dipole, (4) the energy of interaction between permanent dipole and permanent dipole,
(5) the energy of interaction between permanent dipole and induced dipole, (6) the energy
of interaction between induced dipole and induced dipole, (7) the London dispersion
energy, and (8) the Born repulsion energy. 

We number the ions and molecules consecutively from the fixed site to the end of the
linear array, and define the positive direction as that of increasing numbers. The valency
(0, +1, or −1) of the ith entity is represented by Zi; � is the electronic charge; rij is a scalar
quantity representing the distance from the ith to the j th entity and is positive if i < j; 
μj is the scalar permanent dipole moment of the j th entity and is positive or negative as
the dipole lies parallel or antiparallel to the positive direction; bj is equal to ±b, the sign
being determined by the direction of displacement of the permanent dipole from the
geometrical center of the species in a particular configuration. Thus the quantity 

A. CALCULATION—PART I. THE EVALUATION OF THE STATISTICAL
WEIGHTS OF THE VARIOUS CONFIGURATIONS AT EQUILIBRIUM 

We shall follow the treatment of ionic hydration of Moelwyn-Hughes (1949). We repre-
sent a water molecule as one that has a permanent dipole located bÅ away from the geo-
metrical center of an otherwise spherically symmetrical molecule. The repulsion constant
between the oxygen end of the water molecule and a cation is then assumed to be similar
to that between the same cation and a fluoride ion (which resembles oxygen, Moelwyn-
Hughes); the repulsive field is represented as inversely proportional to the ninth power of
the distance between the centers of the two interacting atoms. The whole array is first as-
sumed to be at 0°K. The total potential energy � of a particular configuration can be cal-
culated from the equation:
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depends only upon the orientation of the dipole within the species. We determine the equi-
librium orientation of the dipoles with respect to the linear system by minimizing the total
energy as a function of the possible orientations. The polarizability of the j th entity is rep-
resented by α; Aij is the specific energy constant of the repulsive field between the ith and
j th entities in immediate contact; Uj is the zero-point energy of the j th entity. The zero-
point energy of a cation is taken as the second ionization potential; that of an anion is
taken as the electron affinity (see J. E. Mayer, 1933). The zero-point energy for water mol-
ecules is calculated from the value of refractive indices of Tilton and Taylor (1938) to be
20.92 � 10−12 ergs per molecule.* This agrees closely with the ionization potential of
water, 21.1 � 10−12 ergs per molecule (International Critical Tables). 

In calculating the dispersion energy, we introduce the additional factor of 3/2 into the
London expression,

following Born and Mayer (1932) and Bernal and Fowler (1933). other constants adopted
and their sources are listed in Table 4.1. 
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(1) The polarizability, zero-point energy, and other constants 

The value α, assigned to the oxyacid group, represents the polarizability of the negatively
charged oxygen and includes contributions from nearby atoms and other secondary effects
(see the top of page 60). Consequently, we choose two values representing a reasonable
range, rather than a single value. The lower value is arbitrarily taken as 0.876 � 10−24

cm3. This is not an unreasonable lower limit since the carboxyl oxygen has a polarizabil-
ity of 0.84 � 10−24 cm3; the fluoride ion has a polarizability of 0.81 � 10−24 cm3; the
hydroxyl oxygen, 0.59 � 10−24 cm3; and the ether oxygen, 0.64 � 10−24 cm3 (Ketelaar,
1953, Table 9). For the upper limit, we choose the value 2.0 � 10−24 cm3 (the OH− group
has a polarizability of 1.89 � 10−24 cm3, Ketelaar, 1953). 

The H+ ion is given zero values for both its polarizability and its zero-point energy. The
zero-point energy for the ammonium ion NH+

4 is not available. Mulliken (1933) pointed
out the chemical similarity between the ammonium ion and the potassium ion, and
showed that the ionization potential of the NH+

4 ion is very close to that of the potassium
ion. We have assumed that the NH+

4 ion has the same value for its second ionization po-
tential as the potassium ion has. The best approximation for oxyacid oxygen is that of the
electron affinity of a singly charged oxygen atom (Latimer, 1952). 

The Born repulsion constants for the Na+ ion, the K+ ion, the Rb+ ion, and the Cs+ ion
against either the oxyacid oxygen or the oxygen end of a water molecule were calculated
from experimentally determined heats of hydration using Moelwyn-Hughes’ equation 3
(1949, p. 479). For comparison, the repulsion constants between alkali-metal ions and the
fluoride ion (which resembles oxygen) are also listed (Lennard-Jones, 1936, p. 327). We
calculate the repulsion constant between water molecules from the data of Searcy (1949),
who equated the repulsion term to C/r 12, while we use the approximation A/r 9. The value
of C a constant, is obtained from Searcy. The equilibrium distance r between water mol-
ecules in ice is 2.76Å (Pauling, 1948). Equating C/r 12 to A/r 9, we obtain A = 14.14 �
10−82 erg cm9. We assume the same value for the repulsion between the hydrogen end of
a water molecule and an oxyacid oxygen atom. 

(2) Calculation of equilibrium distances 

Figure 4.3 represents a scheme for the linear arrangement in the cylindrical cavity men-
tioned earlier and the designation of the distances: a, a′, b, d, e, f, g. The next step is to
select or calculate the equilibrium values of these distances. The value of b, the distance
between the center of a water molecule and the center of its permanent dipole moment, is
0.274Å; d-values (roughly the sum of the radii of the cation and a water molecule) for the
Na+ ion, the K+ ion, the Rb+ ion, and the Cs+ ion are, respectively, 1.55Å, 1.57Å, 1.61Å,
and 1.69Å greater than their respective Pauling crystal radii. Adding the average value of
1.61Å to the crystal radius of zero for proton and of 1.45Å for the ammonium ion (Kete-
laar, 1953, Table 3E), we obtain an equilibrium d-value equal to 1.61Å for the H+ ion and
to 3.06Å for the ammonium ion. Substituting these into a0 of equation 3 of Moelwyn-
Hughes, we obtain the repulsion constant A with a value of 0.208 � 10−82 erg cm9 for the
H+ ion and 35.0 � 10−82 erg cm9 for the NH+

4 ion. It now remains only to find the values
of a, a′, e, f, and g. 

(a) The distance g. The g-value represents the center-to-center distance between the
two water molecules distal to the anion (Figure 4.3). Since this distance is far removed
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* Both the repulsion force and the combined cohesive forces are derived from equation (4-4) for the various en-
ergies and from the relation that the force between two interacting particles is equal to the derivative of the
energy between them with respect to r, the distance of separation.

from the anionic charge we assume that it varies only with the nature of the cation and
that it does not depend on the anion. Neglecting the less important terms, we solve for the
equilibrium distance g by assuming d constant for each cation and equating the repulsion
force to the combined cohesive forces* due to the dispersion energy and to the energy of
interaction between ion and dipole. We obtain 

where A represents the repulsion constant, equal to 14.14 � 10−82 erg cm9 between a pair
of water molecules; and the subscript w refers to the water molecule. The equation is then
solved for the different cations with the results given in Table 4.1. These and following
equations are solved by the method of successive approximation. 

(b) The distance e. After similar simplification by neglecting less important terms, one
obtains at equilibrium 

where A′ is the repulsion constant between a cation and the oxygen end of a water mole-
cule; and the subscripts + and − refer to the cationic and anionic groups, respectively.
Defining a variable k by the equation e − c = ke, we substitute ke for (e − c). Rearranging
the above equation, we obtain 

which we then solve for different cations and different k-values. From the relation 
e − c = ke, we find the value of c that corresponds to each k-value; a plot of e versus c for
each alkali-metal ion is shown in Figure 4.4. 

(c) The distances a and a′. Letting a − c = k′a, we find that 

Calculations of a-values using the above equation, first with the smallest d-value for the
H+ ion and then with the largest d-value for the Cs+ ion, show that these differences of 
d-value affect the a-value very little. We decided to use the average d-value of 2.68Å for
all cation calculations and 2.68 + 2.7Å (2.7Å is the diameter of a water molecule) = 5.38Å
for the calculation of all a′-values. The result is also given in Figure 4.4. 



FIGURE 4.4. The relation between the c-value and the computed value of e, a, and a′. The
equilibrium distance e between the centers of the fixed anion and the countercation in the 
0-configuration is represented by the solid line. The dotted lines show the distances a and a′ as func-
tions of the c-value. Here a is the distance between the center of the fixed anion and the first water
molecule in configuration I and a′ is the analogous distance in configurations II and III.

(d) The distance f. Following the same reasoning as above, and again neglecting the
lesser terms, we derive 

for configuration II. The same i-values were used for configuration III. The results are
plotted in Figure 4.5. 

(3) The calculation of the total potential energies of the various configurations 

Having determined all the equilibrium distances, we calculate the total potential energies
of the various configurations. In summing the individual terms, we neglect a particular
term in equation (4-4) only after computing that term for each cation and finding that the
term for the ion with the highest value is less than 0.15 kcal/mole. The total energy for
each ion at each c-value is then plotted against the c-value after subtracting the value n �
4.98 kcal/mole; here n represents the number of water molecules inserted between the
cation and the anion for that configuration and 4.98 kcal/mole corresponds to the energy
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* Each oriented water molecule possesses a total energy equal to the latent heat of vaporization (9.955
kcal/mole) minus RT (0.582 kcal/mole at 20°C). Each water molecule has four “half bonds” (coordination num-
ber = 4. each bond counted twice) of 2.489 kcal/mole each. We assume that two of these half bonds are altered
in transplanting one water molecule to the linear array. 

needed to bring a water molecule from pure liquid water at an infinite distance into the
linear array.* 

Figures 4.6, 4.7, and 4.8 plot the computed energies of the various configurations of the
different ions against the c-value. In Figure 4.6, the polarizability of the oxyacid group is
assumed to be 0.876 � 10−24 cm3; in Figure 4.7, 1.25 � 10−24 cm3; and in Figure 4.8,
2.0 � 10−24 cm3. 

(4) The calculation of the contributions of different configurations 

For each ion at a particular c-value, one configuration represents a state of lowest energy.
In general, the relationship for each ion is such that at lower c-values the higher configu-
ration with a greater number of water molecules intervening between the fixed anion and
the countercation is preferred. As the c-value increases, the preference is shifted to lower

FIGURE 4.5. The relation between the c-value and the computed value of f. The distance between
the first and second water molecules in configurations II and III is represented by f.
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and lower configurations until eventually, at the highest c-value, the 0-configuration is in-
variably the preferred one. This trend is followed by each ion, although the c-value at
which the preference changes from one configuration to another varies from ion to ion. 

From Appendix B, we derive for the species pi

where ns
i is the number of pi ions in a particular configuration s; (p.f.)s

i is the partition func-
tion for that ion in that configuration; and �s

i is the total energy of the ith ion assembly in
configuration s. 

If we assume that only the configurational partition function varies significantly among
the associated ions (see Section 2.4), the relative distribution of the same ion pi in the dif-
ferent configurations would be 

where ρs
i is the number of sites (see Section 2.4A) available to pi in configuration s, a

function of the species of the ion, its configuration, and the c-value as shown in Figures
4.6 to 4.8. If rs

i is the equilibrium distance from the center of pi in configuration s to the
center of gravity of the negative charges (rf − c), on first approximation the ion may be
assumed to be constrained to move within a spherical shell of radius rs

i and thickness h.
We make the further assumption that the empirical equation

which holds for almost all diatomic molecules, also applies to the fixed anion-counterion
pair (see Mayer and Mayer, 1940). In this equation, � stands for the absolute magnitude
of the energy of the bond and one may write for ion pi in configuration s

Substitution into equation (4-12) yields

In the present case, since only those configurations with the greatest (negative) total
energies count, the ratio of (�s

i)
1/2 for two such configurations is always close to unity;

hence
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* No significant variation would be created if the curve of Grahame (1950) or of Hasted et al. (1948) were used
for the rising part of the effective dielectric coefficient.

This equation gives us the percentages of different configurations of the ion-fixed-charge
pair at a particular value of c.

B. CALCULATION—PART II. THE CALCULATION OF THE ASSOCIATION
ENERGIES OF VARIOUS IONS AT DIFFERENT c-VALUES

The problem of ionic association is always ambiguous because it depends intimately upon
the definition of a state of association and the definition of a state of dissociation. The
problem becomes even less clear when we deal with a fixed-charge system in equilibrium
with a free solution. In this case, the dissociation of a counterion-fixed-charge pair could
mean the assumption of a new position by the dissociated counterion either inside or out-
side the fixed-charge system. If it migrates out of the fixed-charge system, the process is
complicated by the development of surface potentials (see Section 10.2 on cellular po-
tential). Further, the association energy depends, in general, on both the spatial position
of the counterion in the fixed-charge system and the history of the fixed-charge system it-
self. To eliminate these complications, we regard as associated any counterion that as-
sumes one of configurations 0, I, II, or III. The fixed-charge system with its complete
assortment of counterions is then broughi from 0°K to the ambient temperature. We now
define the association energy, ΔE, to be the difference between the energy of the associ-
ated counterion and the energy of the first counterion that diffuses out of the fixed-charge
system to an infinite distance in an infinitely dilute aqueous phase. This energy is not sig-
nificantly different from that obtained if we compare the associated counterion in config-
uration 0, I, II, or III with a similar counterion in a hypothetical “beyond III”
configuration within the fixed-charge system. The limit of association (equivalent to r2 of
Section 2.4A) in this case refers to the radius at which there is a sharp increase in the di-
electric coefficient of the medium such that a volume of water which is not dielectrically
saturated intervenes between the two charged particles (see Ling, 1952, inset of Figure 6).

Taking into account the freezing-in of the water molecules between the fixed ion and
its counterion (Section 4.2B), we calculate the association energy by evaluating the work
performed when the counterion is brought from infinity through a medium having the di-
electric properties of water into a microcell at the equilibrium distance which that par-
ticular ion assumes. Instead of using a macroscopic dielectric coefficient, we take Debye’s
value for the dielectric coefficient D(r) at a distance r from the center of a univalent ion.*
In the present case, however, the sharp increase of dielectric coefficient with increase of
r does not begin until r corresponds to a distance three water molecules away from the
anion. Thus, within a region of 8.1Å (3 � 2.7Å) between the cation and anion in config-
uration III, we assume a uniform dielectric constant of three. 

The energy of association of each ion at each c-value is then
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association energies of the various cations against anions of differing c-values are pre-
sented. For Figure 4.9, the polarizability of the oxyacid functional group is taken to be
0.876 � 10−24 cm3; for Figure 4.10, as 1.25 � 10−24 cm3; and for Figure 4.11, as 2.0 �
10−24 cm3. We believe that Figure 4.9 gives the closest approximation to ion interaction
with biological fixed-charge systems; most of this discussion will be based on this figure.

FIGURE 4.9. The relation between the calculated association energy ΔE of various cations and the
c-value of the anionic group. The polarizability α is 0.876 � 10−24 cm3.
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FIGURE 4.10. The relation between the calculated association energy ΔE of various cations and the
c-value of the anionic group. The polarizability α is 1.25 � 10−24 cm3.
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FIGURE 4.11. The relation between the calculated association energy ΔE of various cations and the
c-value of the anionic group. The polarizability α is 2.0 � 10−24 cm3.
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4.4. Discussion and Comment on the Present Model

A. THE TENTATIVE NATURE OF THE ABSOLUTE c-VALUE AND
ASSOCIATION ENERGIES

The adoption of the present linear model is a concession to the forbidding complexity as-
sociated with a three-dimensional model. Since transforming the linear model to a
three-dimensional model would involve symmetrical changes only, one would not expect
the ΔE-versus-c-value plot to involve any disorderly disturbance of the relations calcu-
lated, but only changes of absolute magnitude.

The linear model does discriminate against the higher configurations. Thus the calcu-
lation of the total energies of the 0-configuration would be virtually the same in the lin-
ear as in a three-dimensional model. On the other hand, for configurations I, II, and III,
the energies calculated are a great deal less in the linear model than they would be in a
three-dimensional one; in these higher configurations, a large part of the energy arises
from the interactions between the ions and water molecules and these water molecules are
obviously coordinated in three dimensions. In the linear model, therefore, only a fraction
of the coordinated water molecules is taken into account; the higher the configuration the
greater the discrepancy.

Another aberration is created by the adoption of the Born charging method for the de-
termination of association energies. The assumption that the total hydration energy of the
ions remains the same in the dissociated and associated states is implicit in this procedure.
This assumption is closer to the truth for ions in the higher configurations than for ions in
the 0-configuration. If we neglect the partial loss of ion-water interaction in the 0-config-
uration the calculation overestimates the 0-configuration energy. Consequently, (1) the
aberration from the first part of the calculation is accented and this causes the crossover
points to fall on lower c-values than they should, and (2) the dissociation energy at high
c-values is overestimated.

When the three-dimensional model is developed, we do not expect the shape of the
ΔE-versus-c-value plot to he changed significantly; but the c-values should be much
higher than the present tentative values which we have calculated. One must remember
that the c-value, as defined, is not a spatial location of a particular electron; thus, com-
parison of its value with, say, the diameter of an oxygen atom is quite meaningless and
leads to erroneous conclusions.

The heat of hydration in kcal/mole is 114.6 for Li+, 89.7 for Na+, 73.5 for K+, 67.5 for
Rb+, and 60.8 for Cs+ (Latimer et al, 1939). The coordination numbers of these ions range
from 6 for Li+ to 2 for Cs+ (B. E. Conway, 1952, Table III, p. 53). The overestimation of
the energy of the 0-configuration thus consists essentially of one-sixth to one-half of the
heat of hydration, a value that ranges from −20 to −30 kcal/mole. Therefore, the corrected
association energies for the alkali-metal and ammonium ions at high c-values should have
values no greater than −20 kcal/mole. For a rough quantitative estimation involving these
association energies, we halve the calculated association energies. Figure 4.12 shows the
distribution ratios (with K+ as the reference ion) for an anion polarizability equal to 0.876
� 10−24 cm3. (Compare with Figure 4.13, where the uncorrected values were used.)
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B. INTERNAL ENERGY COMPARED WITH FREE ENERGY

Calculated as work, the association energy ΔE is equivalent to a standard free energy of
association in a dilute salt solution. It does not correspond to the standard free energy of
association in a fixed-charge system because a large positive entropy of dissociation that
is not included in the free energy found by the Born charging method contributes greatly
to the true free energy of adsorption. This large entropy change arises from the configu-
rational- and rotational-entropy gain experienced by a counterion when it is taken from
the associated state in a fixed-charge system to the dissociated state in free solution. The
free energy that we obtained approximates the association energy ΔE more closely than
the free energy of association ΔF. Since we are interested primarily in the relative values
of the association energies with reference to other counterions, we do not need the ab-
solute ΔF and have not attempted to calculate it.

C. THE HYDROGEN ION

Although the O—H bond in an alcoholic group is almost entirely nonionic, resonance
greatly increases the ionic nature of the O—H bond in the carboxylate ion (Pauling, 1948;
Branch and Calvin, 1941). In the present treatment, we do not take account of the covalent

FIGURE 4.12. The relation between the selectivity ratios of various cations and the c-value. The
K+ ion is taken as unity and selectivity ratios are calculated from the association energies given in
Figure 4.9, divided by 2 (see Section 4.4A).
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contribution to the bond between the H+ ion and the carboxyl oxygen; we assume that it
is constant with respect to variation in c-value. This is justified. The pK’s of a list of oxy-
acids vary from less than 1 (HIO3) to 11 (HPO4). Kossiakoff and Harker (1938) showed
that variation in the nonexchange electrostatic part of the interaction energy alone can
produce this wide pK variation. Thus the dissociation of an oxyacid with a pK-value be-
tween 1 and 11 may involve little additional contribution due to variation of the exchange
energy. Bregman (1953) has shown that the sulfonic ion exchange resin (which has an
average pK-value of about 1.6 for its sulfonate radicals) selects alkali-metal ions in the
order Cs+ > Rb+ > K+ > Na+ > Li+, whereas a carboxylic resin (with a pK-value of about
6.0) selects them in the reverse order, Li+ > Na+ > K+ (see Chapter 9). This shows that the
range of c-value variation corresponding to pK-value variation from 1.6 to 6.0 includes
roughly the entire range of c-value variation for which we have made calculations. The
wider range of variation that Kossiakoff and Harker demonstrated to be dependent only

FIGURE 4.13. The relation between the selectivity ratios of various cations and the c-value. The
K+ ion is taken as unity and selectivity ratios are calculated from the association energies given in
Figure 4.9. Here, the anionic polarizability is 0.876 � 10−24 cm3. The assumption is made that all
ions are completely associated and that there is no difference among the partition functions of the
various adsorbed states (configurations) other than the configurational entropy.
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*The hydrated radii of dissociated cations in free solution correspond to the case in which c → − ∞. To ap-
proximate this condition the lowest value of c equal in our calculation to −5.0Å has been chosen for illustration.

on electrostatic variation assures us that it is safe to assume that variation of the covalent
contribution has very little effect on variation of the acid dissociation within the pK range
of interest to us.

The constancy of the covalent contribution does not reflect its magnitude. Although this
constancy makes comparison between ΔE-values calculated at varying c-values valid, the
absolute value for ΔE may not be so reliable. Neglecting the exchange energy has two un-
toward effects: (1) the 0-configuration is de-emphasized, and (2) the association energy is
reduced. Thus, if we were to evaluate it properly for a particular ionic group, the exchange
energy would be added to the 0-configuration both in the calculation of the total energies
of the system (step I) and in the electrostatically calculated association energy (step II).
The net result of adding the exchange-energy contributions may be simulated by increas-
ing the polarizability value α of the anionic group, a change which primarily affects the
0-configuration. The result of this manipulation differs little from the change brought
about by transposing the H+-ion curve from Figure 4.10 (or even from Figure 4.11, with
the higher polarizability) to Figure 4.9, without disturbing the values of the curves of the
other ions.

D. THE STATISTICAL INTERPRETATION OF THE MEANING OF
“HYDRATED IONIC RADII” IN THE CLASSICAL LYOTROPIC SERIES

At the lowest c-value, the free energy of association follows the same order as the classi-
cal lyotropic (Hofmeister) series, Cs+ > Rb+ > K+ > Na+ > Li+; this order was found to de-
pict the relative effectiveness of the action of these ions on colloidal systems as well as
their mobilities in dilute aqueous solution (Hofmeister, 1888; Höber, 1945). From the
point of view of the present theory, this is due entirely to the statistical nature of the num-
ber of water molecules found between the cation and the fixed anion. Thus if the same
number of water molecules intervenes between the different cations and the same anion,
the cation with the smallest crystal radius will always have the highest free energy of as-
sociation. In fact, however, at the lowest c-value, the largest ion (Cs+) has the highest
energy of association because, statistically, it prefers to have fewer water molecules be-
tween it and the anion.

The water molecules between the cation and the anion clearly do not belong, as
hydration water, to either the cation or the anion, exclusively. If we arbitrarily assign these
water molecules to the cation only, the statistical nature of the water of hydration would
explain the fact that a hydrated ion may have a radius only a fraction of an angstrom unit
larger than its crystal radius although the water molecule has a diameter of 2.7Å. To cal-
culate the hydrated diameter of a cation, one must include the crystal radius of the cation
plus the statistical number of water diameters. For c = −5.0Å* and α = 0.876 � 10−24 cm3,
given 2.7Å as the diameter of each water molecule, the theoretical, curve would give the
hypothetical hydrated cation diameters: Li+, 8.57Å; Na+, 7.10Å; K+, 6.67Å; Rb+, 5.64Å;
and Cs+, 3.52Å.

The order of this series is the same as that in the classical lyotropic series. As the
c-value changes, the relative preference for different counterions also changes. This vari-
ation includes both a reversal of preference for one or another of a pair of cations (for



example, a system may go from a class for which Na+/K+ < 1 to a class for which 
Na+/K+ > 1), and a wide variation in the selectivity coefficient within any class of prefer-
ences. Thus, in a mixture of Na+ and K+ at a given c-value (let it fall within the range that
gives Na+/K+ < 1) the countercation population would be represented by both K+ ions and
Na+ ions in all configurations. However, K+ ions would be selectively accumulated be-
cause statistically more Na+ ions would assume higher configurations than K+ ions and
consequently the K+ ion would have a higher association energy. Conversely, there are
high c-values at which there is no water between most of the Na+ ions and the fixed anions
(configuration 0), while K+ ions remain mostly in configurations I and II. The selectivity
coefficient for Na+/K+ would be very much higher (Na+/K+ >> 1) than at the c-values dis-
cussed above. At very high c-values, both K+ and Na+ assume the 0-configuration and the
absolute energies of association are much higher; however, the Na+/K+ ratio again de-
creases because the interconfigurational advantages have vanished. But the ratio cannot
fall to unity because the crystal radius of Na+ is smaller than that of K+.

E. THE IMPORTANCE OF THE PHYSICAL PROPERTIES OF WATER

It is perhaps obvious that the physical properties of the water molecules intervening in the
various configurations are of critical importance because of their effect on short-range
interactions. Thus the substitution of deuterium oxide (D2O) for water (H2O) affects acid
dissociation constants, as mentioned in the introduction, and has a profound effect on the
c-value versus total-potential-energy plots of the various ions in Figures 4.6 to 4.8. Such
changes in interaction energies are the basis of the functional and morphological changes
of cells kept in D2O media, discussed on page xxviii.

F. THE CRITICAL IMPORTANCE OF AN OPTIMAL MICROCELL SIZE

Very high selectivity ratios have been calculated for the ratios of K+, NH+
4 Rb+, or Cs+ to

Na+ or Li+ at various c-values. The reason is that at these c-values, Li+ and Na+ ions pre-
fer high configurations, whereas K+, NH+

4, Rb+, and Cs+ ions prefer low configurations. A
high configuration subsumes a sufficient microcell volume to permit a sizable number of
water molecules around the ion pairs. If the fixed ionic sites are too close together, the
preference for the higher configurations by, say, Na+ or Li+, is lost and the selectivity ratio
falls. If the microcell is excessively large, the counterions will be dissociated and there
will then be a loss of ionic selectivity. Thus, for optimal selectivity, a microcell is needed
in which, for the particular association energies involved, there will he both a high degree
of ionic association and sufficient water to allow the assumption of the higher configura-
tions. It seems that nature has anticipated this need by providing living cells with an
average microcell 20Å in diameter, and by providing effective charge fixation with a pro-
fusion of anchoring sites in the form of H-bonding and ionic groups.

G. THE OPTIMAL c-VALUE FOR MAXIMUM SELECTIVITY

Given an optimal microcell size, one can calculate the theoretical selectivity ratios for a
particular pair of ions from the association energies given in Figures 4.9 to 4.11. Results
of such calculations are illustrated in Figure 4.13, which demonstrates that for the maxi-
mal ratio of, say, Na+/K+, a particular range of optimal c-values exists. Variation in c-value
beyond this range in either direction causes a decline in selectivity.
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Abstract: This work presents the analysis of pharmacological properties of a homologous set of
cephalothin derivatives formed after inserting an aliphatic ester substituent having from one to ten
carbon atoms (ie. -CH3 or -CH2CH3) in place of the former carboxyl group (-C(O)OH). These com-
pounds were shown to have significant correlations and associations in their properties after analy-
sis by pattern recognition methods including cluster analysis, detrended correspondence analysis,
and K-means cluster analysis. Formula weight of all derivatives is directly correlated and increases
with molar volume, parachor, and molar refractivity. Index of refraction decreases as formula
weight of derivatives increases. Polar surface area of all derivatives remains constant at 102.02 A2

as formula weight increases. Partitioning between 1-octanol/water values of Log P increases as the
length of the aliphatic ester group increases. The number of nitrogens, oxygens, -NH and -OH
groups, remains constant for all derivatives remains the same at 2, 6, and 1, respectively. Homologs
1 to 7 (based on number carbon atoms of ester group) show zero violations of the Rule of 5, which
indicates effective drug bioavailabilty. Values of polar surface area indicate that more than 25% of
any derivative present in the intestinal system would be absorbed. The ethyl and propyl derivative
of cephalothin have Log P values indicating efficient permeation of the central nervous system. De-
trended correspondence analysis and K-means cluster analysis showed associations and inter-
relationships among these derivatives that will be clinically useful for the treatment of bacterial
infections. 
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CEPHALOSPORINS ARE generally considered bactericidal, have low toxicity, and in-
hibit mucopeptide synthesis in bacterial cell walls [1]. Cephalothin is a first generation
cephalosporin that is a semisynthetic derivative of cephalosporin C and is active against



both gram-negative and gram-positive bacteria [1]. Cephalothin is not well absorbed from
the gastrointestinal tract, however it is rapidly disseminated from intramuscalar sites of in-
jection [1]. Cephalothin is widely distributed in body tissues but does not normally enter
the cerebrospinal fluid (but will reach low levels due to meningeal inflammation) and has
a larger relative volume than some penicillins [1]. Approximately 60% of administered
cephalothin is bound to plasma protein and 60% to 80% is eliminated in unchanged form
by renal tubular secretion [1]. Bacterial resistance to cephalosporins has been on the in-
crease and documented on a world wide basis [2, 3, 4, 5]. Substantial resistance that is
specific to cephalothin has been observed in various clinical isolates [6]. 

Many important pathogens have become resistant to multiple classes of antimicrobial
agents, covering most clinically useable antimicrobials, making such infections costly to
treat and increasingly subject to failure [7]. Modes of drug resistance include various
mechanisms of drug inactivation, target site modifications, and the events of reduced drug
uptake or enhanced efflux [7]. For gram-negative pathogens (E. coli) the mechanism of
drug efflux is recognized as an important cause of multidrug resistance [7]. 

Statistical analysis methods are applied to determine the source of property differences,
side effects, and variation in activities for drugs that have similar structural features [8].
An important approach to these studies is the alteration of the size and shape of a drug by
instituting the following: (1) changing the number of methylene groups; (2) changing the
degree of unsaturation; and (3) adding or removing a ring system [8]. The addition of
methylene groups along a chain increases the lipophilicity of a drug, increases permeation
of lipid cell membranes, and may increase the activity [8]. The addition of a methylene
group (-CH2-) along a chain constitutes the formation of a homologous series [9]. Many
studies have shown that the addition of 1 to 6 or 7 methylene groups results in the increase
of drug activity [9]; however, the chain lengthening beyond this point results in a decrease
of activity. A 2-way plot of the number of methylene groups versus the drug potency re-
sults in a unimodal figure [9]. Statistical analysis of properties can elucidate beneficial
characteristics of a drug candidate before they are put through expensive and time-con-
suming biological testing. Studies using multivariate methods have successfully eluci-
dated properties for improvement of various drug delivery and dosage forms [10, 11]. The
aliphatic chain imparts useful effects on molecular properties that have been revealed here
through application of pattern recognition analysis. 

MATERIALS AND METHODS 

Molecular Modeling and Properties Determination 

Molecular modeling and molecular properties were determined by utilizing ChemS-
ketch v. 5 (90 Adelaide Street West, Toronto, Ontario, M5H 3V9, Canada) and Molinspi-
ration (Liscie udolie 2, SK-841 04 Bratislava, Slovak Republic). 

Pattern Recognition Analysis 

Multivariate data matrix is analyzed by the following algorithms to show pattern rela-
tionships within their numerical values. Detrended correspondence analysis and K-means
cluster analysis determined by PAST Version 0.45 (copyright May 2001, Oyvind Ham-
mer, D. A. T. Harper). Cluster analysis was determined by KyPlot Version 2.0 beta 15
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(copyright 1997-2001, Koichi Yoshioka). Analysis of similarities (ANOSIM) on proper-
ties of the homologous series was accomplished by PAST Version 0.45. 

RESULTS AND DISCUSSION 

Previous studies have shown the propyl and butyl esters of cephalothin have antibacte-
rial activity against Eshcerichia coli that is similar to that of the parent compound, and
with substantial inhibitory effect on ampicillin resistant E. coli [12]. These findings sug-
gest that a homologous series of cephalothin derivatives could have substantial clinical ef-
ficacy in the treatment of bacterial infections. By back altering the length of the aliphatic
ester substituent it is possible to vary important pharmacological attributes that will en-
hance the effectiveness of antibacterial action and benefit the pharmacokinetic profile of
these agents. The analysis presented in this work shows clearly inter-relationships of the
homologs and to the parent compound cephalothin. In addition, the favorable conclusion
of these analysis shows clearly the efficacy of exploring the potential uses of other ho-
mologous sets of antibacterial agents. 

The molecular structures of cephalothin and its homologous derivatives is presented in
Figure 1. The carboxyl group (-C(O)OH) of the antibiotic is replaced by an ester sub-
stituent having a single methyl group (homolog 1) to as many as 10 carbon atoms (9
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FIGURE 1. The molecular structures of members of the homologous series are presented here for
comparison to the parent antibiotic cephalothin. Note that the beta-lactam ring is intact. The parent
cephalothin has a carboxyl group whereas the homologs have an ester substituent. The homologs 1
to 10 have carbon atoms within an aliphatic chain and are designated as to their number of carbon
atoms. 



methylene groups and 1 end methyl group) along an aliphatic chain (ie., no branches). All
other components of the parent structure remain the same, inclusive of the beta-lactam
ring. Cephalothin itself is a first generation semisynthetic cephalosporin and a derivative
of cephalosporin C, which is active against both gram-negative and gram-positive bacteria
[1]. 

Numerical values of important pharmacological properties are shown in Table I for
each homolog. Derivatives are identified by the number of carbon atoms in the aliphatic
chain of the ester substituent. Properties presented in Table I appear to vary according to
the length of the ester chain. Molar volume, molar refractivity, and parachor are polariz-
ability parameters. Index of refraction is the speed of light in a vacuum divided by the
speed of light within the agent, these values having a range of 0.1. Molar refractivity is a
measure of steric factors, a constitutive-additive property, and a measure of the volume
occupied by a group of atoms. Molar refractivity also increases as the formula weight and
molar volume increases, indicating the concurrent increase in steric effects. 

Homologs 1 to 7 show zero violations of the Rule of 5, which indicates that these ho-
mologs should have favorable bioavailability [13]. The Rule of 5 states that a drug may
show poor permeation when two or more of the following occur: (1) formula weight is >
500; (2) Log P > 5; and (3) there are >10 H-bond acceptors [13]. Only homologs 8, 9, and
10 show violations of Rule of 5, with homolog 9 and 10 being the only homologs falling
in the category of poor bioavailability (ie., FW > 500 and Log P > 5). The number of oxy-
gens, nitrogens, -NH groups, and -OH groups remains constant for homologs 1 through
10. These groups contribute strongly to the hydrogen bonding activity of the drugs in
aqueous environment and the polar surface area. With the polar components remaining
constant as the formula weight increases the lipophilic tendency of the homologs will in-
crease, an observation substantiated by the steady increase of the Log P values for ho-
mologs 1 to 10. The increase in lipophilic propensity and therefore inclination for
repositing in cellular membranes accompanies a concurrent inclination for reduced aque-
ous solubility. Polar surface area (PSA) for homologs 1 to 10 is 102.02 A2 and parent
cephalothin at 113.01 A2. Values of PSA have been shown to be efficient in prediction of
absorption in the intestinal tract and central nervous system [14, 15]. These PSA numer-
ical values indicate that homologs 1 to 10 are expected to have absorption of approxi-
mately 30% within the intestinal tract, while the parent cephalothin is approximately 20%
absorbed. The presence of the ester group enhances absorption within the intestinal tract.

K-means cluster analysis designates subjects (homologs) in clusters of highest similar-
ity but limits the number of clusters to a target value designated by the investigator (ie.,
there is no hierarchy) [16, 17, 18, 19]. In this study, K-means cluster analysis was per-
formed on properties shown in Table I into a maximum of 4 clusters. Results of K-means
cluster analysis are as follows (homologs identified by number of carbon atoms within the
ester chain): Cluster 1) Homolog 3; Cluster 2) Homolog 7, 8, 9, 10; Cluster 3)
Cephalothin and homolog 1; Cluster 4) Homolog 2, 4, 5, and 6. Interestingly homolog 3
is designated into a cluster all its own, however homolog 2 is clustered with 4, 5, and 6,
which suggests the properties of these lower weight homologs demarcates 3 as distinct.
The parent cephalothin and the lowest weight homolog 1 are grouped together and
thereby considered most similar. The highest weight homologs 7, 8, 9, and 10 feature the
most similarity to one another. Resolution of the homologous series can be increased
through K-means analysis into 5 clusters. The results of analysis follows: Cluster 1)
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Homolog 8, 9, and 10; Cluster 2) Homolog 3 and 4; Cluster 3) Cephalothin and homolog
1; Cluster 4) Homolog 5, 6, and 7; Cluster 5) Homolog 2. Again the lowest weight ho-
molog 1 is grouped with cephalothin. The highest weight homologs 8, 9, and 10 are clus-
tered together and most similar. The intermediate homologs are separated into two
clusters as 3 and 4, with 5, 6, and 7. 

Standard cluster analysis utilizing single linkage with standard euclidean distance pro-
duces a vertical dendrogram which is presented in Figure 2. The low molecular weight
homologs 1 and 2 along with the parent cephalothin (indicated by object 0) are consid-
ered distinct from the intermediate and high molecular weight homologs. However
cephalothin and homolog 1 are determined to be the most similar. Interestingly this analy-
sis determines homolog 2 to be distinct unto itself and a break point between the low
weight and higher weight compounds, all other compounds separated into the superclus-
ter initiated at node A. Homologs 3 to 10 are contained within a supercluster (node B) that
is further differentiated into other subclusters. Homologs 4 and 8 are within a subcluster
that is contained within the higher cluster bearing 6, 7, 9, and 10 (going from greater di-
vergence to greater convergence). Intermediate weight homologs 3 and 5 are most simi-
lar to each other and considered distinct from homologs 4, 8, 6, 7, 9, and 10 (placed in
order of increasing convergence) within the supercluster at node B. 
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FIGURE 2. This vertical dendrogram reveals the results of cluster analysis of properties presented
in Table I, accomplished by single linkage analysis utilizing standard euclidean distance. Objects
are homologous derivatives of the parent compound cephalothin designated by the number of car-
bon atoms in the aliphatic chain of the ester group. Where the cephalothin parent structure is des-
ignated by “0” (ie., zero carbons) and homologs defined accordingly from 1 carbon to 10 carbons.



Correspondence analysis is a method of factoring categorical variables and displaying
them so that associations can be studied in 2 or more dimensions (ie., a 2-way plot) [20].
Routine correspondence analysis can suffer from 2 problems: (1) arch effect owing to uni-
modal distribution; and (2) compression of data at initial and terminal ends [20]. De-
trending removes the arch effect and compression of data [20]. Detrended correspondence
analysis is performed on properties of Table I and results shown in the 2-way plot of
Figure 3. Clearly by this analysis the parent cephalothin (enclosed rectangle) is consid-
ered distinct (least similar) to all homologs 1 to 10. The highest molecular weight ho-
mologs 9 and 10 are most similar and considerably distinct from 1 through 8. Homologs
1 to 7 (enclosed circle) are determined to be most similar and plotted along axis 1 and
axis 2 in an approximate linear fashion. The roughly lineal configuration suggests identi-
fication of non-random attributes within the molecular properties. ANOSIM (analysis of
similarity) provides a statistical analysis to determine whether a significant difference ex-
ists between 2 or more groups. A positive test statistic R value approaching 1 indicates

ANALYSIS OF HOMOLOGOUS DERIVATIVES OF CEPHALOTHIN 153

FIGURE 3. Detrended correspondence analysis of properties in Table I show associations among
homologs based upon those pharmaceutical descriptors. Clearly the parent compound cephalothin
is distinct from the homologous derivatives (inset rectangle). Homologs 1, 2, 3, 4, 5, 6, and 7 (based
on number of carbons in aliphatic chain of ester substituent) are in closest proximity (see inset cir-
cle), a result that suggests these homologs have greater similarity among themselves than with the
parent cephalothin and homologs 8, 9, and 10. Homologs 9 and 10 lie in closest proximity with ho-
molog 8 centered between these two groupings, results suggesting distinct characteristics among
these members of the homologous series.



dissimilarity between groups. The numerical result (R) shows the level of dissimilarity
and can range as high as 1.000, which indicates maximum dissimilarity. ANOSIM com-
putation between the parent cephalothin antibiotic and all homologs 1 to 10 determined
an R = 0.8089, which indicates a high level of dissimilarity. 

Neonatal meningitis requires antibiotic therapy which includes ampicillin and a third-
generation cephalosporin. Strains of Escherichia coli (E. coli) are carried to the meninges
after invading the blood stream from the gastrointestinal tract or nasopharynx. Neuroin-
flammatory conditions and bacterial infections increase the permeability of the blood-
brain barrier to various substances [21]. Previous studies have shown that the major
determinant of antibiotic penetration of the cerebral spinal fluid is passive diffusion along
a concentration gradient and lipid solubility [22, 23]. Escherichia coli is the most com-
mon gram-negative bacteria that causes meningitis in neovates and invades the microvas-
cular endothelial cells [24]. The propyl and butyl esters of cephalothin are homologs 3
and 4 of the series studied here and have been shown to inhibit ampicillin resistant E. coli
[12]. The ester substituent increases the lipophilicity of the parent cephalothin (ie., higher
Log P values). The relationship of Log P to penetration of the blood-brain barrier (BBB)
has been studied and concludes that the optimum Log P value for entry through the BBB
is 2 ± 0.5 [25]. Homolog 2 and 3 have Log P values of 1.558 and 2.061, respectively, suit-
able for BBB penetration and presumably treatment of meningitis. Therefore, the use of
cephalothin homologs may benefit the clinical treatment of neonatal meningitis.

In summation, the properties of a homologous series of cephalothin have been analyzed
by pattern recognition methods and shown to have clinically beneficial inter-relationships.
Properties of molar volume, molar refractivity, and parachor increase as formula weight
increases. Values of Log P increase as the length of the aliphatic ester substituent increases.
Homologs 2 and 3 should penetrate the BBB and be useful in the treatment of neonatal
meningitis. The values of PSA for homologs 1 to 10 remains constant at 102.02 A2.

This work was funded by the Department of Chemistry, University of Nebraska, College of Arts &
Sciences, Omaha, Nebraska 68182.
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ć-value analogue, definition of, 105
CHO, J-W., 77

D-effect (direct electrostatic effect), 105
Dielectric saturation, 105
DENOGRADOV, V.A., 93
Diabetes mellitus

thoran, thermal therapy effect on, 85
Diazepam in hornets   

effect on fertility and social behavior, 31 

Dihydrolipoic acid
inhibition of cell apoptosis by, 1

Electron-donating cardinal adsorbent (EDC), 105
Electron-withdrawing cardinal adsorbent

(EWC), 105
ERMAKOV, N.Y., 31, 43

F-effect, direct and indirect, 105
Free energy

of association, 105
of adsorption, 105

FUJITA, H., 1
FUKSMAN, E., 31

Gene expression, hepatic
acetaminophen effect on, 77

Hepatic gene expression
acetaminophen effect on, 77

Hepatotoxicity in mice
acetaminophen effect on, 77

Hornet, Oriental
effect of diazepam on fertility and social

behavior of, 31
Hornet brain

magnetic resonance imaging (MRI) of, 43
Hornet cerebral structures

magnetic resonance imaging (MRI) of, 43
Hornet fertility

diazepam effect on, 31
Hornet social behavior

diazepam effect on, 31
Hypertension

thoron, thermal therapy effect on, 85
Hypokinetic rats

tissue magnesium in, 93
effect of magnesium supplementation on, 93



I-effect (indirect inductive effect), 105
INOUE, M., 1
ISHAY, J.S., 31, 43

JEONG, S-Y., 77   

KAKURIS, K.K., 93
KATAOKA, T., 21, 85

LING, G.N., 55, 105
Ling’s fixed charge hypothesis (LFCH), 105
LIM, J-S., 77
α-lipoic acid

antioxidant activity of, 1
role in apoptotic cell death, 1
stimulation of membrane permeability by, 1

Low-dose X-ray irradiation
histological changes in mice spleen due to,

21
Lymphatic follicles, histological changes in

effect of low-dose irradiation on, 21

Magnesium (tissue) during hypokinesia
effect of magnesium supplementation on, 93

Magnetic resonance imaging
See MRI

MIZUGUCHI, Y., 21
MRI of hornet brain and cerebral structures, 43

NAKAGAWA, S., 85
NAVON, G., 43
NOTOHARA, K., 21
NEUFELD, A., 43

OKIMURA, Y., 1

PARK, H-J., 77
Plasma cells of spleen

low-dose X-ray irradiation effect on, 21
PLOTKIN, M., 31, 43
Polarized-multilayer theory of cell water (PM

theory), 105
Polarized oriented-multilayer theory of cell

water (POM theory), 105
Polypeptide chain, 105

Pseudo-cardinal sites, 105

RANA, S.V.S., 77

Salt linkage, 105
SAKODA, A., 85
SASAKI, J., 1
SATO, E.F., 1
Sieve membrane theory

as taught in biology textbooks, 55
disproof of, 55

Sodium pump hypothesis
as taught in biology textbooks, 55
disproof of, 55

Spleen cells (mice), histological changes in,
due to low-dose irradiation, 21  

TAGUCHI, T., 21
Thermal therapy

effect on diabetes mellitus and hypertension,
85

Thoron therapy
effect on diabetes mellitus and hypertension,

85
UMEGAKI, T., 1
UTSUMI, K., 1

Vespa orientalis
See Hornet

VOLYNCHIK, S., 43

Water
multilayer polarization and orientation, 105
physical properties of, 105
polarization of, 105

X-ray irradiation, low-dose,
See low-dose X-ray irradiation

YAMAOKA, K., 21, 85
YERULLIS, K.B., 93
YOON, S., 77

ZORBAS, Y.G., 93

158 INDEX



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [486.000 720.000]
>> setpagedevice


